- 可以根据一颗树的后序遍历确定树的根,进而根据中序遍历确定左右子树;
- 注意递归的思想,实现可以参考线段树的建树思路,任一子树在遍历中是连续区间,用l,r表示即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
using namespace std;
int ls[10005],rs[10005],inod[10005],otod[10005],num0,root0,minn=1000005,ye=10005;
char str[50005];
void getin(int a[])
{
int ans=0,num=0;
for(int i=0;i<strlen(str);i++)
if(str[i]!=' ')
ans=ans*10+str[i]-48;
else{
a[++num]=ans;
ans=0;
}
a[++num]=ans;
num0=num;
}
int build(int l1,int r1,int l2,int r2)
{
if(l1>r1) return 0;
int root=otod[r2];
int p=l1,num;
for(;inod[p]!=root;)
p++;
num=p-l1;
ls[root]=build(l1,p-1,l2,l2+num-1);
rs[root]=build(p+1,r1,l2+num,r2-1);
return root;
}
void dfs(int x,int ans)
{
ans+=x;
if(!ls[x]&&!rs[x])
{
if(minn>ans||(minn==ans&&x<ye))
{
minn=ans;
ye=x;
}
return ;
}
if(ls[x]) dfs(ls[x],ans);
if(rs[x]) dfs(rs[x],ans);
}
void intt()
{
for(int i=1;i<=10000;i++)
ls[i]=rs[i]=0;
minn=1000005;ye=10005;
}
int main()
{
while(gets(str))
{
getin(inod);
gets(str);
getin(otod);
root0=build(1,num0,1,num0);
dfs(root0,0);
cout<<ye<<endl;
intt();
}
return 0;
}