论文阅读:Beat by Beat: Classifying Cardiac Arrhythmias with Recurrent Neural Networks
一、摘要
利用12186个单导联心电图记录的带注释的数据集构建了循环神经网络(RNN)集合,能够区分正常窦性心律,房颤,其他类型的心律不齐和太嘈杂以至于无法解释的信号。为了简化在时间维度上的学习,我们引入了一种新颖的任务公式,该公式将ECG信号的自然分段转化为心跳,从而大幅减少了每个序列的时间步长。另外,我们通过一种注意力机制扩展了RNN,使我们能够推断出RNN专注于做出决定的心跳。通过使用注意力,我们的模型保持了高度的可解释性,同时还实现了最新的分类性能,在看不见的测试集上平均F1得分为0.79(n = 3,658)。
二、数据
们使用了Phys-ioNet心脏病学计算机(CinC)2017挑战[8]的数据集,其中包含12186条不同长度的独特单导ECG记录。专家们将这些心电图注释为正常的窦性心律,房颤,其他心律不齐或过于嘈杂而无法分类。挑战组织者将3,658(30%)个这些ECG记录作为测试集保密。此外,我们将公共数据集的20%的非分层随机子集作为验证集。
作为针对数据集的不平衡类分布的另一项措施,我们对每个训练样本对损失函数的贡献进行加权,使其与整个数据集中其类的患病率成反比。
三、方法
我们提出了一种基于递归神经网络(RNN)的机器学习方法,以在这种更具挑战性的环境中(只有一条导线和很短的ECG记录长度)区分各种类型的心律。为了简化对时间维度上的依存关系的学习,我们引入了一种新颖的任务公式,该公式利用了ECG信号的自然搏动分段。除了利用先前工作中已证明具有高度区分性的几种心跳功能外,我们还使用堆叠式降噪自动编码器(SDAE)[3]来捕获形态结构上的差异。此外,我们通过软注意力机制扩展了RNN [4] – [5] [6] [7] 这使我们能够推断出RNN优先决定哪个ECG细分。
四、结果
我们的方法在PhysioNet CinC Challenge 2017的私人测试集上达到了0.79的平均F1分数(Ñ = 3 ,658 )正常节奏,房颤和其他心律失常的F1等级分别为0.90、0.79和0.68。除了其最先进的性能,我们的方法还通过在心跳上使用软注意力机制来保持高度的可解释性。