【论文阅读】An expert system for automated identification of obstructive sleep apnea from single-lead ECG

论文:An expert system for automated identification of obstructive sleep apnea from single-lead ECG using random under sampling boosting
在这里插入图片描述

一、摘要

这篇文章采用了一种新颖的信号处理技术即TQWT,首次引入RUSBoost基于单导联的ECG信号对睡眠呼吸暂停进行分类。最终目标是开发一种用于家庭护理的便携式,可穿戴但低功耗的睡眠呼吸暂停监测设备。

二、数据

采用了Physionet的呼吸暂停ECG数据库
记录已从35个受试者中获得。呼吸暂停-心电图数据集的记录分为三组,即正常组(C类,在OSAS中最多5分钟),临界线组(B类,在OSAS中具有5–99分钟)和呼吸暂停设置(A类,在OSAS中至少有100分钟)。c,b和a类受试者的平均年龄为33、46和50 年。c,b和a类的受试者分别是27-47岁,39-53 岁和29-63岁。这些受试者的呼吸暂停低通气指数(AHI)在0到83之间变化。这些受试者的年龄在27到63 岁之间,其中平均年龄为45 岁,年龄标准偏差为10岁。的身体质量指数的受试者(BMI)和19.2之间变化 (意思: )。受试者的体重在53到135 千克(86.3±22.2 千克)之间。每组的录音时间约为7-10 小时。记录已由专业记分员标记为睡眠呼吸暂停/呼吸不足事件。记录已被标记为60秒。每个段的标签指示该段中OSAS事件的存在(或不存在)。ECG信号的采样频率为100 Hz。信号的分辨率为12位。因此,每个ECG信号段长达60 s或6000个样本。图2示出了非呼吸暂停和呼吸暂停信号段。有关数据集的更多详细信息,请查阅[21]。
UCDDB数据集
其中包括来自25名睡眠呼吸障碍者的通宵多导睡眠图。受试者的年龄(21位男性和4位女性)在28至68岁之间变化(平均:49.96±9.55)。受试者的体重在59.8 公斤至128.6公斤之间变化(平均:95.02±14.70 公斤)。多导睡眠图已使用Jaeger Toennies(德国Erich Jaeger GmbH)系统获得。此数据集的ECG记录已通过修改的导线V2收集。手指脉搏血氧仪已用于记录SpO2信号。该数据库的ECG记录的采样率为125 赫兹。记录已由专业记分员按一分钟进行分段。然后,给每个段贴上标签(即非呼吸暂停或呼吸暂停)。

三、方法

TQWT是一种灵活的小波变换,已成为分析振荡性质信号的理想信号分解方案[23]使用TQWT分解ECG信号的片段,并获得子带。然后,从每个所得的TQWT子带计算三个统计特征。最后,使用RUSBoost进行睡眠呼吸暂停分类。
在这里插入图片描述

RUSBoost是一种新提出的混合采样/增强分类模型,特别适合解决类不平衡问题[30]。它采用随机欠采样(RUS),只要未达到所需的平衡,就会从包含大多数实例的类中随机删除实例。

在本文中,决策树已用作弱分类器或WeakLearn ,算法的整体性能取决于树的数量。下一节将介绍该参数的最佳选择。RUSBoost克服了SMOTE的两个警告。首先,SMOTEBoost增加了算法的复杂度。SMOTEBoost必须找到k少数阶级例子的最近邻居。之后,它在它们之间进行推断以创建新实例。相反,RUSBoost只是随机摆脱了多数类的实例。其次,要注意的是SMOTE依赖于过采样。就模型训练时间而言,这实际上是非常低效的。更糟的是,SMOTEBoost采用了​​Boosting。这意味着必须通过更大的训练数据集来生成许多模型。相反,RUSBoost涉及较小的训练数据集,因此,所需的模型训练时间也较短[30]。研究表明,RUSBoost的性能是可比的,并且通常比SMOTEBoost和AdaBoost更好,尽管它是比两者更简单,更快速的技术[30]。前述优点启发了在建议的方案中使用RUSBoost。

四、结果与讨论

文章针对RUSBoost评估了八个广泛使用的分类器。它们是-极限学习机(ELM),普拉森(Prazen)的概率神经网络(Prazen PNN),自举聚合(Bagging),k最近邻(kNN),支持向量机(SVM),最小二乘SVM(LS-SVM),随机森林(RF)和自适应增强(AdaBoost)。这些分类模型的更详细描述可以在[31],[11]中找到。
在这项工作中,kNN在k= 1时表现出最佳性能。为了实现AdaBoost,RF和Bagging,决策树已用作基础学习者或弱分类器。再次,为了实现ELM,使用了三个激活函数-hardlimit,sine和Sigmoidal。获得了最佳精度值S型函数,如图7所示。图7表明,即使RF,AdaBoost和Bagging产生更高的精度,kNN仍具有良好的算法性能。但是,从图7可以明显看出,RUSBoost是分类模型的最佳选择,因为它的准确性优于竞争分类器。
在这里插入图片描述

还检查了三个TQWT参数的效果及其最佳值的选择。TQWT分解级别数的值从1到30以1为步长变化。在每种情况下,都执行我们算法的特征提取和分类过程。图8显示了我们的实验结果。对于J = 26 ,精度值变为最大值。先前的研究表明为了消除小波的过多振铃,在通过TQWT分解信号段时必须保持[23]。结果,从图9可以看出,r的值从3变化到20,并且对于r= 3获得了最佳的精度。这样也已经确定了Q因子的最佳值。图10显示了算法性能随Q因子的变化。如图10所示,在这项工作中Q的值设置为5。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值