我们抓取与操作物体的能力包括我们灵巧的手、我们的触觉以及眼睛和肌肉的反馈,这些都使我们能够保持受控的抓握。Billard和Kragic 2019年在Science上发表了“Trends and challenges in robot manipulation”综述文章,回顾了机器人学在模拟这些功能方面取得的进展。从完全定义的环境中操作的简单的夹持器发展到能够识别、选择和操作随机收集物体的机器人。计算机视觉、计算机处理能力和给机器人提供反馈的触觉材料正在得到进一步的发展。
论文地址
- 论文下载地址:
https://science.sciencemag.org/content/364/6446/eaat8414 - CAAI认知系统与信息处理专委会论文分享地址:
https://mp.weixin.qq.com/s/USfEkANns-8PKugjZ1_1ig
机器人操作现状与挑战
- 机器人能够熟练地在重复和熟悉的设置中收集和操作对象,如工业装配设置。但对于频繁改变抓取物类型形状的不适用。
- 检测部分隐藏的或者透明的物体(例如当相互堆叠时)仍然很困难。
- 虽然机器人擅长处理刚性物体,但它们仍然难以处理因大小、重量或表面特性而不同的柔性材料。
- 机器人灵巧度的提高不仅局限于机械手的设计,而且需要先进的软件程序实时分析视觉、触觉和力信息,并将这些不同的感官联系起来进行建模,以正确识别操作对象并执行操作。
- 机械