CINTA作业四

3、证明命题6.6

因为a ∈ \in G,所以存在 a − 1 a^{-1} a1,使得 a a − 1 aa^{-1} aa1=e.
因为 b a = a b ba=ab ba=ab
所以 b a a − 1 = c a a − 1 baa^{-1}=caa^{-1} baa1=caa1
b e = c e be=ce be=ce
所以 b = c b=c b=c
因为 a b = a c ab=ac ab=ac
所以 a − 1 a b = a − 1 a c a^{-1}ab=a^{-1}ac a1ab=a1ac
e b = e c eb=ec eb=ec
所以 b = c b=c b=c

4、证明命题6.7

(1) g m g n g^mg^n gmgn=g…g(m-1次) g…g(n-1次)=g…g(m+n-1次)= g m + n g^{m+n} gm+n
(2) ( g m ) n (g^m)^n (gm)n= g m . . . g m g^m...g^m gm...gm(n-1次)=((g…g)(m-1次)…(g…g))(n-1次)=g…g(mn-1次)= g m n g^{mn} gmn
共有n个(m-1次),中间共有n-1次,所以共是n(m-1)+n-1=mn-1次。
(3) ( h − 1 g − 1 ) − n = ( h − 1 g − 1 ) − 1 . . . ( h − 1 g − 1 ) − 1 = ( g − 1 ) − 1 ( h − 1 ) − 1 . . . ( g − 1 ) − 1 ( h − 1 ) − 1 = ( g h ) n (h^{-1}g^{-1})^{-n}=(h^{-1}g^{-1})^{-1}...(h^{-1}g^{-1})^{-1}=(g^{-1})^{-1}(h^{-1})^{-1}...(g^{-1})^{-1}(h^{-1})^{-1}=(gh)^n (h1g1)n=(h1g1)1...(h1g1)1=(g1)1(h1)1...(g1)1(h1)1=(gh)n

5、证明对任意偶数阶群 G \mathbb G G,都存在g ∈ \in G,g ≠ \ne =e且 g 2 g^2 g2=e.

依题意得: g m = e g^m=e gm=e,其中m=2n,n ∈ \in N \mathbb N N*
所以 g 2 n = e g^{2n}=e g2n=e
所以 ( g 2 ) n = e (g^2)^n=e (g2)n=e
有封闭性的: g 2 ∈ G g^2 \in \mathbb G g2G
a = g 2 a=g^2 a=g2,所以 a p = e a^p=e ap=e,其中p ∈ \in N \mathbb N N*
假设 g 2 ≠ e g^2\ne e g2=e,则当n为奇数时, a n a^n an ≠ \ne =e,与 a p = e a^p=e ap=e矛盾,所以 g 2 = e g^2=e g2=e

6、证明命题6.8

(1)结合律:
因为H是G的子集,所以 ∀ a , b , c ∈ H \forall a,b,c\in \mathbb H a,b,cH都有
∀ a , b , c ∈ G \forall a,b,c\in \mathbb G a,b,cG
又因为G是群,所以 ( a b ) c = a ( b c ) (ab)c=a(bc) ab)c=a(bc)
(2)存在单位元:
因为 a , a ∈ H a,a\in \mathbb H a,aH
所以 a , a − 1 ∈ H a,a^{-1}\in \mathbb H a,a1H
因为 a a − 1 = e aa^{-1}=e aa1=e
所以 e ∈ H e\in H eH
(3)逆元:
因为 e , a ∈ H e,a\in H e,aH
所以 e , a − 1 ∈ H e,a^{-1}\in H e,a1H
因为 e a − 1 = a − 1 ea^{-1}=a^{-1} ea1=a1
所以 a − 1 ∈ H a^{-1}\in \mathbb H a1H
(4)封闭性:
因为 a , b ∈ H a,b\in \mathbb H a,bH,所以 a − 1 , b − 1 ∈ H a^{-1},b^{-1}\in \mathbb H a1,b1H
所以 a , b − 1 ∈ H a,b^{-1}\in \mathbb H a,b1H,所以 a ( b − 1 ) − 1 = a b ∈ H a(b^{-1})^{-1}=ab\in \mathbb H a(b1)1=abH

7、设G是群,对任意n ∈ \in N \mathbb N N,i ∈ \in [0,n], g i g_i gi ∈ \in G \mathbb G G.证明 g 0 g 1 . . . g n g_0g_1...g_n g0g1...gn的逆元是 g n − 1 . . . g 1 − 1 g 0 − 1 g_n^{-1}...g_1^{-1}g_0^{-1} gn1...g11g01.

g 0 g_0 g0,其逆元为 g 0 − 1 g_0^{-1} g01
假设对于k个数,有 m = g 0 . . . g k m=g_0...g_k m=g0...gk,其的逆元为 m − 1 = g k − 1 . . . g 0 − 1 m^{-1}=g_k^{-1}...g_0^{-1} m1=gk1...g01,
对于k+1个数,有
g 0 . . . g k + 1 = m g k + 1 g_0...g_{k+1}=mg_{k+1} g0...gk+1=mgk+1,其逆元为
g k + 1 − 1 m − 1 = g k + 1 − 1 . . . g 0 − 1 g_{k+1}^{-1}m^{-1}=g_{k+1}^{-1}...g_0^{-1} gk+11m1=gk+11...g01

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值