CINTA作业七

3、如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。

证明:

5、定义映射 ϕ : G |→ G 为:g |→ g 2 g^2 g2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。

证明:充分性:由于ϕ是群同态,故对任意 a , b ∈ G , a,b\in \mathbb G, a,bG,由:
ϕ ( a ⋅ b ) = ϕ ( a ) ∘ ϕ ( b ) \phi (a·b)=\phi (a)\circ\phi(b) ϕ(ab)=ϕ(a)ϕ(b)
( a b ) 2 = a 2 ⋅ b 2 (ab)^2=a^2·b^2 (ab)2=a2b2
a b ⋅ a b = a 2 ⋅ b 2 ab·ab=a^2·b^2 abab=a2b2
由消去律得: b ⋅ a b = a ⋅ b 2 , b ⋅ a = a ⋅ b b·ab=a·b^2,b·a=a·b bab=ab2,ba=ab
所以 G 是 阿 贝 尔 群 。 \mathbb G是阿贝尔群。 G
必要性:由于 G \mathbb G G是阿贝尔群,故对任意的 a , b ∈ G , 有 : a b = b a a,b\in \mathbb G,有:ab=ba a,bGab=ba
所以: ϕ ( a ⋅ b ) = ( a b ) 2 = a b ⋅ a b = b a ⋅ a b = b ⋅ a 2 ⋅ b = a 2 ⋅ b ⋅ b = a 2 ⋅ b 2 = ϕ ( a ) ∘ ϕ ( b ) \phi (a·b)=(ab)^2=ab·ab=ba·ab=b·a^2·b=a^2·b·b=a^2·b^2=\phi(a)\circ\phi(b) ϕ(ab)=(ab)2=abab=baab=ba2b=a2bb=a2b2=ϕ(a)ϕ(b)
所以 ϕ \phi ϕ是一种群同态。

7. 证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。

因为[G:H]=2,所以对任意 g ∈ G , 有 ① g ∈ H ② g ∉ H g\in \mathbb G,有①g\in \mathbb H②g\notin \mathbb H gG,gHg/H
① g ∈ H 时 : g H = H = H g ; ①g\in \mathbb H时:g\mathbb H=\mathbb H=\mathbb Hg; gHgH=H=Hg;
② g ∉ H 时 : 对 任 意 h ∈ H , 有 g h = h 1 ′ ∉ H 但 h 1 ′ ∈ G , h g = h 2 ′ ∉ H 但 h 2 ′ ∈ G ②g\notin \mathbb H时:对任意h\in\mathbb H,有 gh=h_1^{'}\notin\mathbb H但h_1^{'}\in\mathbb G,hg=h_2^{'}\notin\mathbb H但h_2^{'}\in\mathbb G g/HhH,gh=h1/Hh1G,hg=h2/Hh2G
即存在 H ′ = G − H , 使 得 h 1 ′ ∈ H ′ , h 2 ′ ∈ H ′ \mathbb H^{'}=\mathbb G-\mathbb H,使得h_1^{'}\in\mathbb H^{'},h_2^{'}\in\mathbb H^{'} H=GH使h1H,h2H
g H ∈ H ′ , H g ∈ H ′ g\mathbb H\in\mathbb H^{'},\mathbb Hg\in\mathbb H^{'} gHH,HgH
对任意 h ′ ∈ H ′ , 有 h ′ ∈ G 但 h ′ ∉ H , 在 H 中 存 在 h 1 , h 2 使 得 : h^{'}\in\mathbb H^{'},有h^{'}\in \mathbb G但h^{'}\notin\mathbb H,在\mathbb H中存在h_1,h_2使得: hH,hGh/HHh1,h2使
h ′ = g h 1 ∈ g H , h ′ = h 2 g ∈ H g h^{'}=gh_1\in g\mathbb H,h^{'}=h_2g\in \mathbb Hg h=gh1gH,h=h2gHg
所以 g H = H ′ = H g g\mathbb H=\mathbb H^{'}=\mathbb Hg gH=H=Hg
综上,对任意 g ∈ G , 均 有 g H = H g g\in \mathbb G,均有g\mathbb H=\mathbb Hg gG,gH=Hg,即 H 是 G 的 正 规 子 群 。 \mathbb H是\mathbb G的正规子群。 HG

9. 证明:如果群 G 是循环群,则商群 G/H 也是循环群。

证明: 对 任 意 a ∈ G , 有 ( a H ) n = a n H . ( 交 换 律 + 结 合 律 ) 对任意a\in \mathbb G,有(a\mathbb H)^n=a^n\mathbb H.(交换律+结合律) aG,aH)n=anH.(+)
当 a 是 G 的 生 成 元 时 , a n 能 生 成 G , 当a是G的生成元时,a^n能生成\mathbb G, aGanG,
所 以 G / H 每 个 元 素 都 能 够 由 a n H 生 成 , 所以\mathbb G/\mathbb H每个元素都能够由a^n\mathbb H生成, G/HanH,
( 因 为 a n 能 生 成 G 中 的 所 有 元 素 , H 又 是 G 的 正 规 子 群 , (因为a^n能生成\mathbb G中的所有元素,\mathbb H又是\mathbb G的正规子群, (anGHG,
故 a n H 能 生 成 G 的 所 有 陪 集 , 不 信 就 找 个 例 子 看 看 ) 故a^n\mathbb H能生成\mathbb G的所有陪集,不信就找个例子看看) anHG,)
故 a H 是 群 G / H 的 生 成 元 , 故a\mathbb H是群\mathbb G/\mathbb H的生成元, aHG/H
( 因 为 群 G / H 就 是 所 有 陪 集 的 集 合 ) (因为群\mathbb G/\mathbb H就是所有陪集的集合) (G/H)
故 群 G / H 是 循 环 群 。 故群\mathbb G/\mathbb H是循环群。 G/H

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值