同构、同态与商群
3、如果 H1 和 H2 是群 G 的正规子群,证明 H1H2 也是群 G 的正规子群。
证明:
5、定义映射 ϕ : G |→ G 为:g |→ g 2 g^2 g2。请证明 ϕ 是一种群同态当且仅当 G 是阿贝尔群。
证明:充分性:由于ϕ是群同态,故对任意
a
,
b
∈
G
,
a,b\in \mathbb G,
a,b∈G,由:
ϕ
(
a
⋅
b
)
=
ϕ
(
a
)
∘
ϕ
(
b
)
\phi (a·b)=\phi (a)\circ\phi(b)
ϕ(a⋅b)=ϕ(a)∘ϕ(b)
即
(
a
b
)
2
=
a
2
⋅
b
2
(ab)^2=a^2·b^2
(ab)2=a2⋅b2
即
a
b
⋅
a
b
=
a
2
⋅
b
2
ab·ab=a^2·b^2
ab⋅ab=a2⋅b2
由消去律得:
b
⋅
a
b
=
a
⋅
b
2
,
b
⋅
a
=
a
⋅
b
b·ab=a·b^2,b·a=a·b
b⋅ab=a⋅b2,b⋅a=a⋅b
所以
G
是
阿
贝
尔
群
。
\mathbb G是阿贝尔群。
G是阿贝尔群。
必要性:由于
G
\mathbb G
G是阿贝尔群,故对任意的
a
,
b
∈
G
,
有
:
a
b
=
b
a
a,b\in \mathbb G,有:ab=ba
a,b∈G,有:ab=ba
所以:
ϕ
(
a
⋅
b
)
=
(
a
b
)
2
=
a
b
⋅
a
b
=
b
a
⋅
a
b
=
b
⋅
a
2
⋅
b
=
a
2
⋅
b
⋅
b
=
a
2
⋅
b
2
=
ϕ
(
a
)
∘
ϕ
(
b
)
\phi (a·b)=(ab)^2=ab·ab=ba·ab=b·a^2·b=a^2·b·b=a^2·b^2=\phi(a)\circ\phi(b)
ϕ(a⋅b)=(ab)2=ab⋅ab=ba⋅ab=b⋅a2⋅b=a2⋅b⋅b=a2⋅b2=ϕ(a)∘ϕ(b)
所以
ϕ
\phi
ϕ是一种群同态。
7. 证明:如果 H 是群 G 上指标为 2 的子群,则 H 是 G 的正规子群。
因为[G:H]=2,所以对任意
g
∈
G
,
有
①
g
∈
H
②
g
∉
H
g\in \mathbb G,有①g\in \mathbb H②g\notin \mathbb H
g∈G,有①g∈H②g∈/H
①
g
∈
H
时
:
g
H
=
H
=
H
g
;
①g\in \mathbb H时:g\mathbb H=\mathbb H=\mathbb Hg;
①g∈H时:gH=H=Hg;
②
g
∉
H
时
:
对
任
意
h
∈
H
,
有
g
h
=
h
1
′
∉
H
但
h
1
′
∈
G
,
h
g
=
h
2
′
∉
H
但
h
2
′
∈
G
②g\notin \mathbb H时:对任意h\in\mathbb H,有 gh=h_1^{'}\notin\mathbb H但h_1^{'}\in\mathbb G,hg=h_2^{'}\notin\mathbb H但h_2^{'}\in\mathbb G
②g∈/H时:对任意h∈H,有gh=h1′∈/H但h1′∈G,hg=h2′∈/H但h2′∈G
即存在
H
′
=
G
−
H
,
使
得
h
1
′
∈
H
′
,
h
2
′
∈
H
′
\mathbb H^{'}=\mathbb G-\mathbb H,使得h_1^{'}\in\mathbb H^{'},h_2^{'}\in\mathbb H^{'}
H′=G−H,使得h1′∈H′,h2′∈H′
即
g
H
∈
H
′
,
H
g
∈
H
′
g\mathbb H\in\mathbb H^{'},\mathbb Hg\in\mathbb H^{'}
gH∈H′,Hg∈H′
对任意
h
′
∈
H
′
,
有
h
′
∈
G
但
h
′
∉
H
,
在
H
中
存
在
h
1
,
h
2
使
得
:
h^{'}\in\mathbb H^{'},有h^{'}\in \mathbb G但h^{'}\notin\mathbb H,在\mathbb H中存在h_1,h_2使得:
h′∈H′,有h′∈G但h′∈/H,在H中存在h1,h2使得:
h
′
=
g
h
1
∈
g
H
,
h
′
=
h
2
g
∈
H
g
h^{'}=gh_1\in g\mathbb H,h^{'}=h_2g\in \mathbb Hg
h′=gh1∈gH,h′=h2g∈Hg
所以
g
H
=
H
′
=
H
g
g\mathbb H=\mathbb H^{'}=\mathbb Hg
gH=H′=Hg
综上,对任意
g
∈
G
,
均
有
g
H
=
H
g
g\in \mathbb G,均有g\mathbb H=\mathbb Hg
g∈G,均有gH=Hg,即
H
是
G
的
正
规
子
群
。
\mathbb H是\mathbb G的正规子群。
H是G的正规子群。
9. 证明:如果群 G 是循环群,则商群 G/H 也是循环群。
证明:
对
任
意
a
∈
G
,
有
(
a
H
)
n
=
a
n
H
.
(
交
换
律
+
结
合
律
)
对任意a\in \mathbb G,有(a\mathbb H)^n=a^n\mathbb H.(交换律+结合律)
对任意a∈G,有(aH)n=anH.(交换律+结合律)
当
a
是
G
的
生
成
元
时
,
a
n
能
生
成
G
,
当a是G的生成元时,a^n能生成\mathbb G,
当a是G的生成元时,an能生成G,
所
以
G
/
H
每
个
元
素
都
能
够
由
a
n
H
生
成
,
所以\mathbb G/\mathbb H每个元素都能够由a^n\mathbb H生成,
所以G/H每个元素都能够由anH生成,
(
因
为
a
n
能
生
成
G
中
的
所
有
元
素
,
H
又
是
G
的
正
规
子
群
,
(因为a^n能生成\mathbb G中的所有元素,\mathbb H又是\mathbb G的正规子群,
(因为an能生成G中的所有元素,H又是G的正规子群,
故
a
n
H
能
生
成
G
的
所
有
陪
集
,
不
信
就
找
个
例
子
看
看
)
故a^n\mathbb H能生成\mathbb G的所有陪集,不信就找个例子看看)
故anH能生成G的所有陪集,不信就找个例子看看)
故
a
H
是
群
G
/
H
的
生
成
元
,
故a\mathbb H是群\mathbb G/\mathbb H的生成元,
故aH是群G/H的生成元,
(
因
为
群
G
/
H
就
是
所
有
陪
集
的
集
合
)
(因为群\mathbb G/\mathbb H就是所有陪集的集合)
(因为群G/H就是所有陪集的集合)
故
群
G
/
H
是
循
环
群
。
故群\mathbb G/\mathbb H是循环群。
故群G/H是循环群。