CINTA作业九:QR

1、证明命题11.2。

(1)封闭性: ∀ a , b ∈ Q R p , 有 a ⋅ b = Q R ∈ Q R p \forall a,b\in \mathbb {QR}_p,有a\cdot b=QR\in \mathbb {QR}_p a,bQRpab=QRQRp

(2)结合律: ∀ a , b , c ∈ Q R p , 有 : \forall a,b,c\in \mathbb {QR}_p,有: a,b,cQRp,

{ a ≡ x 1 2 ( m o d   p ) b ≡ x 2 2 ( m o d   p ) c ≡ x 3 2 ( m o d   p ) \left\{\begin{matrix}a \equiv x_1^2 (mod \ p)\\b \equiv x_2^{2} (mod \ p)\\c \equiv x_3^{2} (mod \ p)\end{matrix}\right. ax12(mod p)bx22(mod p)cx32(mod p)

( a ⋅ b ) ⋅ c ≡ x 1 2 x 2 2 x 3 2 ( m o d   p ) = a ⋅ ( b ⋅ c ) (a\cdot b)\cdot c\equiv x_1^2x_2^2x_3^2 (mod \ p)=a\cdot (b\cdot c) (ab)cx12x22x32(mod p)=a(bc)

(3)单位元:1

(4)逆元:

①当p=1时,显然 Q R p 是 群 。 \mathbb {QR}_p是群。 QRp

②当p ≥ 3 \ge 3 3时,设存在逆元a-1

有费马小定理得:

a p − 1 ≡ 1 ( m o d p ) a^{p-1}\equiv 1\pmod p ap11(modp)

a a − 1 ≡ 1 ( m o d p ) aa^{-1}\equiv 1\pmod p aa11(modp)

a − 1 = a p − 2 a^{-1}=a^{p-2} a1=ap2

由封闭性可得: a p − 2 ∈ Q R p a^{p-2}\in \mathbb {QR}_p ap2QRp

2、使用群论的方法证明定理11.1。

证明:

定 义 从 Z p ∗ 到 Q R p 的 映 射 ψ : ∀ a ∈ Z p ∗ , a → a 2 , 则 a , b ∈ Z p ∗ , 有 : 定义从\mathbb Z_p^*到\mathbb {QR}_p的映射\psi :\forall a\in \mathbb Z_p^*,a\to a^2,则a,b\in\mathbb Z_p^*,有: ZpQRpψ:aZp,aa2,a,bZp,

ψ ( a ⋅ b ) = ( a b ) 2 = a 2 ⋅ b 2 = ψ ( a ) ∘ ψ ( b ) \psi (a\cdot b)=(ab)^2=a^2\cdot b^2=\psi (a)\circ \psi (b) ψ(ab)=(ab)2=a2b2=ψ(a)ψ(b)

ψ \psi ψ是一种群同态。

Q R p \mathbb {QR}p QRp的单位元是1,故 K e r ψ = { 1 , p − 1 } = K Ker \psi=\{1,p-1\}=\mathbb K Kerψ={1,p1}=K Z p ∗ \mathbb Z_p^* Zp的正规子群。

则存在标准同态 ϕ : Z p ∗ → Z p ∗ / K . \phi :\mathbb Z_p^*\to \mathbb Z_p^*/\mathbb K. ϕ:ZpZp/K.

由第一同构定理,存在唯一同构映射 η : Z p ∗ / K → Q R p \eta :\mathbb Z_p^*/\mathbb K\to \mathbb {QR}_p η:Zp/KQRp

∣ Q R p ∣ = ∣ Z p ∗ / K ∣ = ∣ Z p ∗ ∣ ∣ K ∣ = p − 1 2 = ( p − 1 ) / 2 |\mathbb {QR}_p|=|\mathbb Z_p^*/\mathbb K|=\frac {|\mathbb Z_p^*|}{|\mathbb K|}=\frac {p-1}2=(p-1)/2 QRp=Zp/K=KZp=2p1=(p1)/2

故定理11.1得证。

3、定义映射 ψ : Z p ∗ → ± 1 为 ψ ( a ) = ( a p ) , ∀ a ∈ Z p ∗ \psi:\mathbb Z_p^*\to{\pm1}为 \psi(a)=(\frac ap), \forall a \in \mathbb Z_p^* ψ:Zp±1ψ(a)=(pa),aZp 。请证明这是一个满同态。

解:

ψ ( a ⋅ b ) = ( a ⋅ b p ) = ( a p ) ⋅ ( b p ) = ψ ( a ) ∘ ψ ( b ) \psi (a\cdot b)=(\frac {a\cdot b}p)=(\frac ap)\cdot (\frac bp)=\psi (a)\circ \psi (b) ψ(ab)=(pab)=(pa)(pb)=ψ(a)ψ(b)

所以 ψ \psi ψ是一种同态。

∀ a ∈ Z p ∗ , \forall a\in \mathbb Z_p^*, aZp,

若a是QR,则: ψ ( a ) = 1 \psi (a)=1 ψ(a)=1

若a是QNR,则: ψ ( a ) = − 1 \psi (a)=-1 ψ(a)=1

所以$\psi 是 一 种 满 射 。 故 是一种满射。故 \psi $是一种满同态。

4、设 p 是奇素数,请证明 Z p ∗ Z_p^* Zp 的所有生成元都是模 p的二次非剩余。

证明:

任取a是 Z p ∗ \mathbb Z_p^* Zp的生成元,设m是模p的一个QR,n是模p的一个QNR,则存在 p , q ∈ Z , 使 得 a p = m , a q = n p,q\in \mathbb Z,使得a^p=m,a^q=n p,qZ,使ap=m,aq=n

当a是模p的QR时,则 ∀ k ∈ Z , a k 是 Q R ; \forall k\in\mathbb Z,a^k是QR; kZ,akQR

当a是模p的QNR时,则 ∀ k ∈ Z , a 2 k 是 Q R , a 2 k + 1 是 Q N R ; \forall k\in\mathbb Z,a^{2k}是QR,a^{2k+1}是QNR; kZ,a2kQR,a2k+1QNR

由于 a p = m , a q = n a^p=m,a^q=n ap=m,aq=n,故a是QNR,

Z p ∗ 的 所 有 生 成 元 都 是 模 p 的 二 次 非 剩 余 。 \mathbb Z_p^*的所有生成元都是模p的二次非剩余。 Zpp

5、证明命题11.4。

证明:

1、

当 a 是 Q R 时 , 则 a ≡ b ≡ x 2 ( m o d p ) 当a是QR时,则a\equiv b\equiv x^2\pmod p aQRabx2(modp),故b是QR,则有 ( a p ) = ( b p ) = 1 (\frac ap)=(\frac bp)=1 (pa)=(pb)=1;

当 a 是 Q N R 时 , 则 a ≡ b ≡ x 2 ( m o d p ) 无 解 当a是QNR时,则a\equiv b\equiv x^2\pmod p无解 aQNRabx2(modp),故b是QNR,则有 ( a p ) = ( b p ) = − 1 (\frac ap)=(\frac bp)=-1 (pa)=(pb)=1;

综上, ∀ a , b ∈ Z 且 不 能 被 p 整 除 , 有 : \forall a,b\in \mathbb Z且不能被p整除,有: a,bZp

如 果 a ≡ b ( m o d p ) , 则 ( a p ) = ( b p ) 如果a\equiv b\pmod p,则(\frac ap)=(\frac bp) ab(modp),(pa)=(pb)

2、

①当a,b均为QR时,则ab也是QR,故 ( a p ) ( b p ) = 1 ⋅ 1 = 1 = ( a b p ) (\frac ap)(\frac bp)=1\cdot 1=1=(\frac {ab}p) (pa)(pb)=11=1=(pab);

②当a,b均为QNR时,则ab是QR,故 ( a p ) ( b p ) = − 1 ⋅ − 1 = 1 = ( a b p ) (\frac ap)(\frac bp)=-1\cdot -1=1=(\frac {ab}p) (pa)(pb)=11=1=(pab);

③当a,b其中一个为QR,另一个为QNR时,则ab是QNR,故 ( a p ) ( b p ) = 1 ⋅ − 1 = − 1 = ( a b p ) (\frac ap)(\frac bp)=1\cdot -1=-1=(\frac {ab}p) (pa)(pb)=11=1=(pab).

( a p ) ( b p ) = ( a b p ) (\frac ap)(\frac bp)=(\frac {ab}p) (pa)(pb)=(pab)

3、

无论a是QR还是QNR,都有a2是QR,故有 ( a 2 p ) = 1 (\frac {a^2}p)=1 (pa2)=1

6、给出推论11.1的完整证明。

证明:

p ≡ 1 ( m o d 4 ) 时 , 则 存 在 k ∈ Z , 使 得 p = 4 k + 1 p\equiv 1\pmod 4时,则存在k\in \mathbb Z,使得p=4k+1 p1(mod4)kZ,使p=4k+1.根据欧拉准则,有:

( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k + 1 − 1 ) / 2 ≡ 1 ( m o d p ) = 1 (\frac {-1}p)\equiv (-1)^{(p-1)/2}\equiv (-1)^{(4k+1-1)/2}\equiv 1\pmod p=1 (p1)(1)(p1)/2(1)(4k+11)/21(modp)=1

p ≡ − 1 ( m o d 4 ) 时 , 则 存 在 k ∈ Z , 使 得 p = 4 k + 3 p\equiv -1\pmod 4时,则存在k\in \mathbb Z,使得p=4k+3 p1(mod4)kZ,使p=4k+3.根据欧拉准则,有:

( − 1 p ) ≡ ( − 1 ) ( p − 1 ) / 2 ≡ ( − 1 ) ( 4 k + 3 − 1 ) / 2 ≡ ( − 1 ) ( m o d p ) = − 1 (\frac {-1}p)\equiv (-1)^{(p-1)/2}\equiv (-1)^{(4k+3-1)/2}\equiv (-1)\pmod p=-1 (p1)(1)(p1)/2(1)(4k+31)/2(1)(modp)=1

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值