CINTA作业八 CRT

1. 手动计算 20002019 (mod 221),不允许使用电脑或者其他电子设备。

解:

20002019mod 221=202019mod 221 · 1002019mod 221

=(7,3)2019 · (9,15)2019

=([7 · 9 mod 13],[3 · 15 mod 17])2019

=(11,11)2019

=([112019 mod 13],[112019 mod 17])

由费马小定理可得:112019 mod 13=1112*168+3 mod 13=113 mod 13=5, 112019 mod 17=1116*126+3 mod 17=5

所以上式=(5,5)

因为(5,5)↔5,所以答案是5.

2.运用 CRT 求解:

x≡8 (mod 11)
x≡3 (mod 19)

解:

记a=8,b=3,p=11,q=19,n=11*19=209

令$ pp^{-1} \equiv 1 \pmod q,qq^{-1} \equiv 1 \pmod p$

解得 p-1=7,q-1=7

所以 x=aqq-1+bpp-1(mod n)=41

经验证,41是正确解。

3.运用 CRT 求解:

x ≡ 1 (mod 5)
x ≡ 2 (mod 7)
x ≡ 3 (mod 9)
x ≡ 4 (mod 11)

解:

M = 5 ∗ 7 ∗ 9 ∗ 11 = 1465 M=5*7*9*11=1465 M=57911=1465

所以 b 1 = M 5 = 693 , b 2 = M 7 = 495 , b 3 = M 9 = 385 , b 4 = M 11 = 315 b_{1}=\frac M5=693,b_{2}=\frac M7=495,b_{3}=\frac M9=385,b_{4}=\frac M{11}=315 b1=5M=693,b2=7M=495,b3=9M=385,b4=11M=315

b 1 b 1 − 1 ≡ 1 ( m o d 5 ) , b 2 b 2 − 1 ≡ 1 ( m o d 7 ) , b 3 b 3 − 1 ≡ 1 ( m o d 9 ) , b 4 b 4 − 1 ≡ 1 ( m o d 11 ) b_{1}b_{1}^{-1} \equiv 1 \pmod 5,b_{2}b_{2}^{-1} \equiv 1 \pmod 7,b_{3}b_{3}^{-1} \equiv 1 \pmod 9,b_{4}b_{4}^{-1} \equiv 1 \pmod {11} b1b111(mod5),b2b211(mod7),b3b311(mod9),b4b411(mod11)

解得: b 1 − 1 = 2 , b 2 − 1 = 3 , b 3 − 1 = 4 , b 4 − 1 = 8 b_{1}^{-1}=2,b_{2}^{-1}=3,b_{3}^{-1}=4,b_{4}^{-1}=8 b11=2,b21=3,b31=4,b41=8

所以 x = 1 ∗ 693 ∗ 2 + 2 ∗ 495 ∗ 3 + 3 ∗ 385 ∗ 4 + 4 ∗ 315 ∗ 8 = 1731 x=1*693*2+2*495*3+3*385*4+4*315*8=1731 x=16932+24953+33854+43158=1731

经验证,1731是正确解。

4.设 mn 为互素的正整数,a > 0 为一个正整数,如果

x ≡ a (mod m) 
x ≡ a (mod n)

xmn 等于什么?为什么?提示:这是一道看上去与中国剩余定理相关的问题。

解:

依题意得:

m|(x-a), n|(x-a).

所以存在 s、t ∈ N \in \mathbb N N,使得: x = t m + a , x = s n + a x=tm+a,x=sn+a x=tm+a,x=sn+a

所以 t m = s n tm=sn tm=sn

又因为m和n互素,故必有 t = r 1 n 或 s = r 2 m t=r_1n或s=r_2m t=r1ns=r2m,其中 r 1 、 r 2 ∈ N r_1、r_2\in \mathbb N r1r2N

x = r 1 m n + a 或 x = r 2 m n + a x=r_1mn+a或x=r_2mn+a x=r1mn+ax=r2mn+a

x ≡ a ( m o d m n ) x \equiv a \pmod {mn} xa(modmn)

附:简单解法

依题意得:m|(x-a),n|(x-a).

因为m、n互素,所以有mn|(x-a)。

(这里就是一个简单的道理:两个互素的数能被某个数整除,则这个数是不是至少是它们两个的积)

x ≡ a ( m o d m n ) x \equiv a \pmod {mn} xa(modmn)

5.设 pq 是不同的两个素数,请证明 : p q − 1 + q p − 1 ≡ 1 ( m o d    p q ) p^{q−1} + q^{p−1} ≡ 1 (\mod pq) pq1+qp11(modpq)

解:

因为 1 ∈ Z p ∗ , 1 ∈ Z q ∗ 1\in \mathbb Z_p^*, 1\in \mathbb Z_q^* 1Zp,1Zq,由中国剩余定理,存在 0 ≤ x < p q 0\le x\lt pq 0x<pq,使得:

x ≡ 1 ( m o d p ) , x ≡ 1 ( m o d q ) x \equiv 1 \pmod {p},x \equiv 1 \pmod {q} x1(modp),x1(modq)

由费马小定理的:

q p − 1 ≡ 1 ( m o d p ) = q q − 1 , p q − 1 ≡ 1 ( m o d q ) = p p − 1 q^{p-1} \equiv 1 \pmod p =qq^{-1},p^{q-1} \equiv 1 \pmod q =pp^{-1} qp11(modp)=qq1,pq11(modq)=pp1

所以 x = 1 ∗ q q − 1 + 1 ∗ p p − 1 ( m o d    p q ) = q p − 1 + p q − 1 x=1*qq^{-1}+1*pp^{-1}(\mod pq)=q^{p-1}+p^{q-1} x=1qq1+1pp1(modpq)=qp1+pq1

因为 p ∣ ( x − 1 ) , q ∣ ( x − 1 ) , 且 p 、 q 是 互 素 的 两 个 数 p|(x-1),q|(x-1),且p、q是互素的两个数 p(x1),q(x1),pq

所以 p q ∣ ( x − 1 ) pq|(x-1) pq(x1)

x ≡ 1 ( m o d p q ) x \equiv 1 \pmod {pq} x1(modpq)

p q − 1 + q p − 1 ≡ 1 ( m o d    p q ) p^{q−1} + q^{p−1} \equiv1 (\mod pq) pq1+qp11(modpq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值