CINTA作业八:CRT

本文详细介绍了如何利用中国剩余定理(CRT)和费尔马小定理解决模运算的同余方程组问题。通过具体的例子展示了将大指数化简为小指数的过程,并通过扩展CRT简化计算。同时,证明了当p和q为不同的素数时,p^q-1+q^p-1 ≡ 1 (mod pq)的性质。
摘要由CSDN通过智能技术生成

1. 手动计算 200 0 2019 ( m o d 221 ) 2000^{2019} (mod 221) 20002019(mod221),不允许使用电脑或者其他电子设备。

注意到221 = 13*17,将其转化成求同余方程组的解
x ≡ 200 0 2019 ( m o d   13 ) x ≡ 200 0 2019 ( m o d   17 ) x≡2000^{2019} (mod \ 13) \\ x≡2000^{2019} (mod \ 17) x20002019(mod 13)x20002019(mod 17)
由费尔马小定理有:
x ≡ 200 0 3 ≡ 1 1 3 ( m o d   13 ) x ≡ 200 0 3 ≡ 1 1 3 ( m o d   17 ) x≡2000^{3} ≡11^3(mod \ 13) \\ x≡2000^{3}≡ 11^3(mod \ 17) x20003113(mod 13)x20003113(mod 17)
x ≡ 3 ( m o d   13 ) x ≡ 5 ( m o d   17 ) x≡3 (mod \ 13) \\ x≡5 (mod \ 17) x3(mod 13)x5(mod 17)
设 a = 3 , b = 5 , p = 13 , q = 17 , 则 n = p q = 221 设 a=3,b=5,p=13,q=17,则n=pq=221 a=3b=5p=13q=17n=pq=221
有CRT与egcd算出
y = 3 ∗ 10 ∗ 17 + 5 ∗ 4 ∗ 13 = 5 ( m o d   n ) y=3∗10∗17+5∗4∗13=5(mod \ n) y=31017+5413=5(mod n)
故值为5


2. 运用 CRT 求解:

x ≡ 8 ( m o d   11 ) , x ≡ 3 ( m o d   19 ) x ≡ 8 (mod \ 11), x ≡ 3 (mod \ 19) x8(mod 11),x3(mod 19)

设 a = 8 , b = 3 , p = 11 , q = 19 , 则 n = p q = 209 设 a=8,b=3,p=11,q=19,则n=pq=209 a=8b=3p=11q=19n=pq=209
下面由egcd算法算出 p − 1 , q − 1 p^{-1}, q^{-1} p1,q1
1 0 9 0 1 11 1 − 1 8 − 1 2 3 3 − 5 2 − 4 7 1 \begin{matrix} 1 & 0 & 9 \\ 0 & 1 & 11 & \\ 1 & -1 & 8 \\ -1 & 2 & 3 \\ 3 & -5 & 2 \\ -4 & 7 & 1 \end{matrix} 1011340112579118321
得: p − 1 = 7 , q − 1 = − 4 + 11 = 7 p^{-1}=7, q^{-1}=-4+11=7 p1=7,q1=4+11=7
y = a q q − 1 + b p p − 1 ( m o d   n ) = 1295 y=aqq^{-1}+bpp^{-1}(mod \ n)=1295 y=aqq1+bpp1(mod n)=1295 m o d mod mod 209 = 41 209 =41 209=41


3.3. 运用 CRT 求解:

x ≡ 1 ( m o d   5 ) , x ≡ 2 ( m o d   7 ) , x ≡ 3 ( m o d   9 ) , x ≡ 4 ( m o d   11 ) x ≡ 1 (mod \ 5),x ≡ 2 (mod \ 7),x ≡ 3 (mod \ 9),x ≡ 4 (mod \ 11) x1(mod 5),x2(mod 7),x3(mod 9),x4(mod 11)

这里用中国剩余定理得推广版可以算出,我这里选择分成两组,算三次中国剩余定理,以减少计算量
x ≡ 1 ( m o d   5 ) , x ≡ 2 ( m o d   7 ) ​ x≡1(mod \ 5), x≡2(mod \ 7) ​ x1(mod 5),x2(mod 7)

x ≡ 3 ( m o d   9 ) , x ≡ 4 ( m o d   11 ) ​ x≡3(mod \ 9), x≡4(mod \ 11) ​ x3(mod 9),x4(mod 11)

与第二题一样的步骤,通过egcd算法和CRT可以算出
x ≡ 16 ( m o d   35 ) , x ≡ 46 ( m o d   99 ) x≡16 (mod \ 35), x≡46 (mod \ 99) x16(mod 35),x46(mod 99)
再对上式计算一次,得
x ≡ 1731 ( m o d   3465 ) x≡1731 (mod \ 3465) x1731(mod 3465)


4.设 m 和 n 为互素的正整数, a > 0 为一个正整数,如果 x ≡ a ( m o d   m ) , x ≡ a ( m o d   n ) x≡a(mod \ m),x≡a(mod \ n) xa(mod m),xa(mod n),x 模 mn 等于什么?为什么?

​由 x ≡ a ( m o d   m ) , x ≡ a ( m o d   n ) x≡a(mod \ m),x≡a(mod \ n) xa(mod m),xa(mod n) 可知 m ∣ ( x − a ) , n ∣ ( x − a ) m|(x-a),n|(x-a) m(xa),n(xa)
所以有 m n ∣ ( x − a ) mn|(x-a) mn(xa),所以 x ≡ a ( m o d   m n ) x≡a(mod \ mn) xa(mod mn)


5.设 p 和 q 是不同的两个素数,请证明 p q − 1 + q p − 1 ≡ 1 ( m o d   p q ) 。 p^{q−1} + q^{p−1} ≡ 1 (mod \ pq)。 pq1+qp11(mod pq)

由费尔马小定理:
p q − 1 ≡ 1   m o d   q q p − 1 ≡ 1   m o d   p p^{q−1}≡1 \ mod \ q \\ q^{p−1} ≡1 \ mod \ p pq11 mod qqp11 mod p
故:
1 ≡ 1   m o d   q 1 ≡ 1   m o d   p 1≡1 \ mod \ q \\ 1 ≡1 \ mod \ p 11 mod q11 mod p
再进行CRT计算有:
1 ≡ 1 ∗ p q − 1 + 1 ∗ q p − 1 ≡ 1 ( m o d   p q ) 1≡1*p^{q−1} + 1*q^{p−1} ≡ 1 (mod \ pq) 11pq1+1qp11(mod pq)
故 p q − 1 + q p − 1 ≡ 1 ( m o d   p q ) 得 证 故p^{q−1} + q^{p−1} ≡ 1 (mod \ pq)得证 pq1+qp11(mod pq)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值