3.3. 线性回归的简洁实现

"""
3.3. 线性回归的简洁实现
"""

"""
3.3.1. 生成数据集
       features是训练数据特征,labels是标签
"""
from mxnet import autograd, nd

num_inputs = 2
num_examples = 1000
true_w = [2, -3.4]
true_b = 4.2

features = nd.random.normal(scale=1, shape=(num_examples,num_inputs))
labels = true_w[0] * features[:, 0] + true_w[1] * features[:, 1] + true_b
labels += nd.random.normal(scale=0.01, shape=labels.shape)

"""
3.3.2. 读取数据
"""

from mxnet.gluon import data as gdata

batch_size = 10
# 将训练数据的特诊和标签组合
dataset = gdata.ArrayDataset(features, labels)
# 随机读取小批量
data_iter = gdata.DataLoader(dataset, batch_size, shuffle=True)

for X, y in data_iter:
    print("X:", X)
    print("y:", y)
    print("--------------------------------------------------------")
    break


"""
3.3.3. 定义模型
首先,导入nn模块。实际上,“nn”是neural networks(神经网络)的缩写。
顾名思义,该模块定义了大量神经网络的层。
我们先定义一个模型变量net,它是一个Sequential实例。
在Gluon中,Sequential实例可以看作是一个串联各个层的容器。
在构造模型时,我们在该容器中依次添加层。
当给定输入数据时,容器中的每一层将依次计算并将输出作为下一层的输入。
"""
from mxnet.gluon import nn

net = nn.Sequential()

"""
回顾图3.1中线性回归在神经网络图中的表示。
作为一个单层神经网络,线性回归输出层中的神经元和输入层中各个输入完全连接。
因此,线性回归的输出层又叫全连接层。
在Gluon中,全连接层是一个Dense实例。我们定义该层输出个数为1。
"""

net.add(nn.Dense(1))

"""
3.3.4. 初始化模型参数

在使用net前,我们需要初始化模型参数,如线性回归模型中的权重和偏差。
我们从MXNet导入init模块。
该模块提供了模型参数初始化的各种方法。
这里的init是initializer的缩写形式。
我们通过init.Normal(sigma=0.01)指定权重参数每个元素将在初始化时随机采样于均值为0、标准差为0.01的正态分布。
偏差参数默认会初始化为零。
"""
from mxnet import init
net.initialize(init.Normal(sigma=0.01))

"""
3.3.5. 定义损失函数
"""
from mxnet.gluon import loss as gloss

loss = gloss.L2Loss() # 平方损失又称范数损失

"""
3.3.6. 定义优化算法
同样,我们也无须实现小批量随机梯度下降。
在导入Gluon后,我们创建一个Trainer实例,并指定学习率为0.03的小批量随机梯度下降(sgd)为优化算法。
该优化算法将用来迭代net实例所有通过add函数嵌套的层所包含的全部参数。
这些参数可以通过collect_params函数获取。
"""

from mxnet import gluon

trainer = gluon.Trainer(net.collect_params(), "sgd", {"learning_rate":0.03})
"""
3.3.7. 训练模型
在使用Gluon训练模型时,
我们通过调用Trainer实例的step函数来迭代模型参数。
上一节中我们提到,由于变量l是长度为batch_size的一维NDArray,
执行l.backward()等价于执行l.sum().backward()。
按照小批量随机梯度下降的定义,我们在step函数中指明批量大小,
从而对批量中样本梯度求平均。
"""
num_epochs = 100
for epoch in range(1, num_epochs + 1):
    for X, y in data_iter:
        with autograd.record():
            l = loss(net(X), y)
        l.backward()
        trainer.step(batch_size)
    l = loss(net(features), labels)
    print("epoch %d, loss: %f" % (epoch, l.mean().asnumpy()))

"""
下面我们分别比较学到的模型参数和真实的模型参数。
我们从net获得需要的层,并访问其权重(weight)和偏差(bias)。
学到的参数和真实的参数很接近。
"""
dense = net[0]
print("true_w:", true_w)
print("dense.weight.data():", dense.weight.data())

print("true_b:", true_b)
print("dense.bias.data():", dense.bias.data())








  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值