当前搜索:

Tensorflow_gpu安装的坑

TensorFlow 有两个版本:CPU 版本和GPU 版本。GPU 版本需要CUDA 和cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。我安装的是 GPU 版本,采用pip 安装方式,所以就以 GPU 安装为例,CPU 版本只不过不需要安装 C...
阅读(83) 评论(0)

Day1

Punctuality is a necessary habit in all public affairs in civilized society. Without it, nothing could ever be brought to a conclusion; everything wo...
阅读(73) 评论(0)

VGG

tools-封装器 封装常用函数全连接层需要拉直softmax label需要进行one hot 重新编码 再输入文件做
阅读(57) 评论(0)

NOTEBOOK随笔

kernel-filter 卷积核=过滤器 滤波器卷积运算 nxn * fxf = (n-f+1)x(n-f+1) 卷积运算结果取决于kernel在原图中有几个位置 缺点 1.每做一次卷积运算,你的image会变小,最终可能变成1x1 2.角落或者边缘区的像素点在输出中采用较少导致信息丢...
阅读(70) 评论(0)

网易云深度学习第二课Notebook3

1.超参数调试处理在机器学习领域,超参数比较少的情况下,我们之前利用设置网格点的方式来调试超参数; 但在深度学习领域,超参数较多的情况下,不是设置规则的网格点,而是随机选择点进行调试。这样做是因为在我们处理问题的时候,是无法知道哪个超参数是更重要的,所以随机的方式去测试超参数点的性能,更为合理,...
阅读(111) 评论(0)

网易云深度学习第二课NoteBook2

优化算法1.Mini-batch梯度下降法对整个训练集进行梯度下降法的时候,我们必须处理整个训练数据集,然后才能进行一步梯度下降,即每一步梯度下降需要对整个训练集进行一次处理,如果训练数据很大时,处理速度就会非常慢。 但是如果每次处理训练数据的一部分进行梯度下降法,则算法的执行速度会变快。而处理...
阅读(113) 评论(0)

网易云深度学习第二课notebook1

改善深层神经网络:超参数调试、正则化以及优化1.训练、验证、测试 对于一个dataset,我们通常将其划分为训练集、验证集、测试集 训练集(train set):用训练集对算法或者模型进行训练 验证集(development set):利用验证集或者成为交叉验证集进行交叉验证,选择出最好的模...
阅读(118) 评论(0)

网易云深度学习第一课第三周编程作业

具有一个隐藏层的平面数据分类 第三周的编程任务: 构建一个含有一层隐藏层的神经网络,你将会发现这和使用逻辑回归有很大的不同。 首先先导入在这个任务中你需要的所有的包。 -numpy是Python中与科学计算相关的基础包 -sklearn提供简单高效的数据挖掘和数据分析 -matplot...
阅读(1058) 评论(2)

string

string基本操作
阅读(72) 评论(0)

new和malloc的区别

1.申请的内存所在位置 new操作符从自由存储区(free store)上为对象动态分配内存空间,而malloc函数从堆上动态分配空间。自由存储区是C++基于new操作符的一个抽象概念,凡是通过new操作符进行内存申请,该内存即为自由存储区。而堆是操作系统中的术语,是操作系统所维护的一块特殊内存...
阅读(75) 评论(0)

typedef struct和struct区别

分三块来讲述: 1 首先: 在C中定义一个结构体类型要用typedef: typedef struct Student { int a; }Stu; 于是在声明变量的时候就可:Stu stu1; 如...
阅读(70) 评论(0)

网易云深度学习第一课第二周编程作业

Part 2: Logistic Regression with a Neural Network mindset你将学到: -建立学习算法的一般架构 -初始化参数 -计算损失函数和它的梯度 -使用优化算法(梯度下降) -按正确的顺序将上述三个函数集合到一个主模块函数中1 - Packa...
阅读(623) 评论(2)

np.linalg

(1)np.linalg.inv():矩阵求逆 (2)np.linalg.det():矩阵求行列式(标量) np.linalg.norm 顾名思义,linalg=linear+algebra,norm则表示范数,首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar): ...
阅读(198) 评论(0)

网易云深度学习第一课第一周编程作业

1.1Python Basics with Numpy (optional assignment)Welcome to your first assignment. This exercise gives you a brief introduction to Python. Even if yo...
阅读(888) 评论(0)

numpy巩固

基础 NumPy 的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类 型、通过一个正整数元组索引的元素表格(通常是元素是数字)。在 NumPy 中维 度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。 例如,在 3D 空间一个点的坐标 [1, 2, 3] ...
阅读(72) 评论(0)

DirectX_11_游戏编程入门_1

第一个DirectX程序 1.创建工程 2.建立窗口程序 3.初始化DirectX 4.怎样清除屏幕 5.怎样显示场景一、创建工程 1.创建工程:C++建立项目 2.添加窗体代码:main函数 在工程中创建好main函数后,我们就能够添加Win32的具体实现代码来创建空窗体,进入主...
阅读(207) 评论(0)

多边形的扫描转换与区域填充

多边形的扫描转换和区域填充是怎么样在离散的像素集上表示一个连续的二维图形 多边形有两种重要的表示方法:顶点法和点阵法 顶点表示是用多边形的顶点序列构成。 优点:这种表示直观、几何意义强、占内存少、易于几何变换。 缺点:它没有明确指出哪些像素在多边形内,故不能直接用于面着色点阵表示是用位于多边...
阅读(485) 评论(0)

直线扫描转换算法

数学上,直线的点有无穷多个,但是在计算机光栅显示器屏幕上表示直线时需要做一些处理。 用有限的像素去逼近直线上无限的点。 为了在光栅显示器上用有限的离散的像素点去逼近这条直线,我们需要知道像素点的x、y坐标。 求出过p0、p1的直线段方程:(斜截式) y=kx+b k=(y1-y0)/(x...
阅读(306) 评论(0)

计算机系统概论

(一)计算机发展历程 (二)计算机系统层次结构 1.计算机系统的基本组成 2.计算机硬件的基本组成 3.计算机软件的基本组成 4.计算机系统的工作过程 (三)计算机性能指标 —吞吐量、响应时间; —CPU 时钟周期、主频、CPI、CPU执行时间 —...
阅读(419) 评论(0)

深度学习和神经网络——第二周笔记

逻辑回归的损失函数: J(θ)=-(ylogy^+(1-y)log(1-y^)) ,(这里省略了连加求和,事实上这是loss function) 当y=1时,J(θ)=-logy^,为了使得J(θ)更接近0,我们需要使得y^更接近于1,由于y^是在sigmoid函数作用之后得来的,它最大不会超...
阅读(283) 评论(0)
    个人资料
    持之以恒
    等级:
    访问量: 2万+
    积分: 1282
    排名: 3万+
    最新评论