航空航天中机器学习子系统设计:流程、工具与数据质量

在这里插入图片描述

引言

在航空航天领域,机器学习技术的应用正在迅速扩展,从飞行控制系统到预测性维护,机器学习子系统已成为现代航空电子系统中不可或缺的一部分。然而,由于航空航天系统对安全性和可靠性的极高要求,设计一个稳健的机器学习子系统需要遵循严格的流程、使用经过验证的工具,并确保数据质量。本文将详细介绍这些关键要素,并探讨如何在航空航天环境中有效地实施机器学习技术。

一、机器学习子系统的设计流程

1.1 W型保障流程

美国汽车工程师学会(SAE International)在其关于人工智能的首份概念文件中,为ARP 6983中的机器学习子系统定义了一种W型保障流程。这一流程旨在确保机器学习子系统的设计和实现满足所有要求,并具有高度的稳健性。
在这里插入图片描述

1.2 机器学习开发生命周期(MLDL)

W型的第一个“V”由机器学习开发生命周期(MLDL)构成。MLDL包含五个主要流程,尽管在实际操作中这些流程可能相互关联,但我们可以按顺序描述它们:

  1. 机器学习需求与架构设计流程
    这一流程需要定义机器学习组件的操作设计域(Operational Design Domain, ODD)以及一系列数据质量要求。操作设计域明确了系统在何种条件下运行,而数据质量要求则确保了训练数据的可靠性和有效性。

  2. 数据管理流程
    数据管理流程包括数据源识别、数据收集、数据准备和数据分配。这一流程确保在机器学习模型的训练和验证过程中使用高质量的数据。

  3. 机器学习模型设计与优化流程
    在这一流程中,设计并优化机器学习模型。这包括选择合适的算法、调整模型参数以及进行模型训练。

  4. 机器学习验证流程
    验证流程确保在MLDL流程中制定的需求正确且完整。这一步骤包括对模型进行测试,以确保其在实际应用中的表现符合预期。

  5. 机器学习验证流程
    最后,验证流程确保机器学习组件满足诸如泛化性和敏感性等所有要求。这一步骤是确保模型在多种条件下都能可靠运行的关键。

二、工具在机器学习生命周期中的重要性

2.1 工具的作用

工具在机器学习生命周期中扮演着至关重要的角色。一些复杂任务,如模型训练或数据管理,若不使用非常复杂的软件工具便无法完成。然而,工具的复杂性也带来了潜在的风险。

2.2 工具的风险

如果工具出现错误,可能会导致严重的安全问题。例如:

  • 模型训练工具问题:可能在训练模型中引入错误。
  • 数据管理工具问题:可能损坏训练数据或测试数据,导致训练模型出现问题。
  • 验证工具问题:可能无法检测到训练模型中的错误。

2.3 工具鉴定标准

为了减轻这些潜在的安全问题,在安全关键环境中使用的所有工具都必须进行评估,必要时需进行鉴定。在航空电子领域,我们使用D178C和DO-330标准来管理工具鉴定方面的事宜。这些标准在传统软件方面拥有悠久且成功的应用历史,但挑战在于,机器学习与传统软件实践有很大不同。

2.4 针对机器学习的工具鉴定调整

在工作组中,我们针对工具使用案例和不同风险因素,研究了这些差异,结果发现需要针对机器学习的特定方面,调整当前的工具鉴定实践。特别是,我们确定需要为数据管理工具制定新的工具鉴定标准。原来针对开发工具的标准1,被细分为标准1A(适用于常规工具)和标准1B(适用于数据管理工具)。我们还为这个新标准与工具鉴定等级制定了映射关系。

三、数据质量的重要性

3.1 数据质量的影响

人工智能和机器学习设计的两大支柱是学习算法和数据。如今,要使用现有算法学习复杂函数,通常需要大量数据。尤其是对于本质上安全关键的应用,重要的不仅是数据的数量,还有数据的质量。

3.2 数据质量属性

在标准中,数据质量属性,如完整性、准确性和代表性,在数据质量要求中予以明确。数据管理流程以及标准中描述的操作设计域特征活动,确保在设计中使用高质量数据。

3.3 数据管理流程

数据管理流程引入了诸如识别数据源、数据收集(可以是真实数据或合成数据)、数据准备和数据分配等活动。这些活动确保了数据的质量和可靠性。

四、结论

4.1 数据质量的重要性

数据质量不仅是机器学习和人工智能设计的技术层面问题,也是这些技术成功和符合伦理部署的基础。随着我们不断创新,应致力于优先保证高质量数据,确保基于人工智能的系统准确、可靠、高效且符合伦理。

4.2 未来展望

随着我们更深入地进入人工智能主导的时代,必须明白这些技术的有效性取决于它们所训练的数据。高质量数据在很大程度上影响机器学习模型的准确性。如果用于训练机器学习模型的数据有偏差或不完整,该模型做出的预测可能会导致不良结果。数据质量还会影响这些模型的可靠性,噪声数据可能导致模型在运行过程中表现不可预测。

通过遵循严格的流程、使用经过验证的工具,并确保数据质量,我们可以在航空航天领域安全有效地应用机器学习技术,推动这一领域的持续创新和发展。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老猿讲编程

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值