模型部署:pytorch转onnx部署实践(下)

本文详细介绍了在将PyTorch模型转换为ONNX格式过程中遇到的问题,包括3维池化和3维卷积在ONNXRuntime中的支持情况,以及ONNX模型动态分辨率输入的探讨。实验结果显示ONNXRuntime对ONNX模型支持较好,适合包含3D操作的模型部署。同时,文章讨论了动态分辨率输入在torch.export中的dynamic_axes参数可能存在的限制,并分享了基于ONNXRuntime和OpenCV部署模型的实践案例。
摘要由CSDN通过智能技术生成

关注并星标

从此不迷路

计算机视觉研究院

30ec67564fbae8c3acd63f222366d2bd.gif

bd58b0f9b2f9dde71ec855ec55c379f8.gif

公众号IDComputerVisionGzq

学习群扫码在主页获取加入方式

2e62344e18605db5b0c0a92ebd578a97.png

计算机视觉研究院专栏

1aa6652a38804b747644200cd2d0af63.png

2

0

在深度学习模型部署时,从pytorch转换onnx的过程中,踩了一些坑。本文总结了这些踩坑记录,希望可以帮助其他人。

2

2

在上一次分享的时候,我们已经撰写了pth转onnx的过程及一些部署过程,今天我们继续分享整个部署过程遇到的坑及解决办法!

2b332615418b2eeb8cec597edee51577.png

(点击上方图片就可以进入《模型部署:pytorch转onnx踩坑实录(上)》)

45df69e906c027b9b6f3f4b19f394111.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值