Pytorch项目打包和部署(3)——代码——flask+onnx

本文介绍了如何使用PyTorch完成项目的部署,通过Flask搭建服务,利用ONNX进行模型导出和跨平台使用。在部署过程中,详细讲解了Flask的配置、图片上传、返回JSON格式数据,以及ONNX模型的检查和精度一致性问题的排查,如onnxruntime的版本控制和GPU卷积算法选择的影响。
摘要由CSDN通过智能技术生成

一、Flask部署

1.1 httpserver.py

from flask import Flask,request
app = Flask(__name__)#确保Flask调用的是当前模块


@app.route('/')# 每个服务定义成一个函数,此为服务器的请求路径
def 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wa1tzy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值