首个全量化Vision Transformer的方法FQ-ViT,大模型落地不远了

点击蓝字 关注我们

关注并星标

从此不迷路

计算机视觉研究院

cd85e10d8fb723cbc958c6082b5b5960.gif

a75b63478a1297bc5e60e05ab6088c35.gif

公众号ID计算机视觉研究院

学习群扫码在主页获取加入方式

8c913d1b9a389120c5bd559f7100ee42.png

论文地址:https://arxiv.org/pdf/2111.13824.pdf

项目代码:https://github.com/megvii-research/FQ-ViT

计算机视觉研究院专栏

Column of Computer Vision Institute

将算法网络进行量化和模型转换可以显着降低模型推理的复杂性,并在实际部署中得到了广泛的应用。然而,大多数现有的量化方法主要是针对卷积神经网络开发的,并且在完全量化的vision Transformer上应用时会出现严重的掉点。今天我们就分享一个新技术,实现高精度量化的Vit部署。AI大模型落地使用离我们还远吗?

af6e32dd7c9ae5f426a130cdef27db22.gif

01

总  述

Transformer 是现在火热的AIGC预训练大模型的基础,而ViT(Vision Transformer)是真正意义上将自然语言处理领域的Transformer带到了视觉领域。从Transformer的发展历程就可以看出,从Transformer的提出到将Transformer应用到视觉,其实中间蛰伏了三年的时间。而从将Transformer应用到视觉领域(ViT)到AIGC的火爆也差不多用了两三年。其实AIGC的火爆,从2022年下旬就开始有一些苗条,那时就逐渐有一些AIGC好玩的算法放出来,而到现在,AIGC好玩的项目真是层出不穷。

53adaadcc73a8a947e26b5143cb3db3e.png

随着近两年来对视觉Transformer模型(ViT)的深入研究,ViT的表达能力不断提升,并已经在大部分视觉基础任务 (分类,检测,分割等) 上实现了大幅度的性能突破。然而,很多实际应用场景对模型实时推理的能力要求较高,但大部分轻量化ViT仍无法在多个部署场景 (GPU,CPU,ONNX,移动端等)达到与轻量级CNN(如MobileNet) 相媲美的速度。

因此,重新审视了ViT的2个专属模块,并发现了退化原因如下:

  • 研究者发现LayerNorm输入的通道间变化严重,有些通道范围甚至超过中值的40倍。传统方法无法处理如此大的激活波动,这将导致很大的量化误差

  • 还发现注意力图的值具有极端的不均匀分布,大多数值聚集在0~0.01之间,少数高注意力值接近1

基于以上分析,研究者提出了Power-of-Two Factor(PTF)来量化LayerNorm的输入。通过这种方式,量化误差大大降低,并且由于Bit-Shift算子,整体计算效率与分层量化的计算效率相同。此外还提出了Log Int Softmax(LIS),它为小值提供了更高的量化分辨率,并为Softmax提供了更有效的整数推理。结合这些方法,本文首次实现了全量化Vision Transformer的训练后量化。

accd74a46ab431dfcf413bbd4d58c136.png

02

新框架

下面的这两张图表明,与CNN相比,视觉转换器中存在严重的通道间变化,这导致了分层量化的不可接受的量化误差。

db2096d07788e6d617d746da5068142d.png

首先解释网络量化符号。假设量化位宽为b,量化器Q(X|b)可以公式化为将浮点数X∈R映射到最近量化仓的函数:

074ae552137b321b0cc8c8d02118ce00.png

Uniform Quantization

Uniform Quantization在大多数硬件平台上都得到了很好的支持。它的量化器Q(X|b)可以定义为:

1cbf5c02453ce30557d0ed53801d3f1b.png

d7bb56c7d81e50f4de0dcc4b6446f50c.png

其中s(标度)和zp(零点)是由X的下界l和上界u确定的量化参数,它们通常是最小值和最大值。

Log2 Quantization

Log2 Quantization将量化过程从线性变化转换为指数变化。其量化器Q(X|b)可定义为:

5040ab6a1e72c9981dca0bec07c5c2ee.png

为了实现完全量化的视觉变换器,研究者对所有模块进行量化,包括Conv、Linear、MatMul、LayerNorm、Softmax等。特别是,对Conv、线性和MatMul模块使用均匀的Min-Max量化,对LayerNor和Softmax使用以下方法。

Power-of-Two Factor for LayerNorm Quantization

在推理过程中,LayerNorm计算每个正向步骤中的统计量µX,σX,并对输入X进行归一化。然后,仿射参数γ,β将归一化输入重新缩放为另一个学习分布。

如刚开始解释分析一样,与神经网络中常用的BatchNorm不同,LayerNorm由于其动态计算特性,无法折叠到前一层,因此必须单独量化它。然而,在对其应用训练后量化时观察到显著的性能下降。查看LayerNorm层的输入,发现存在严重的通道间变化。

研究者提出了一种简单而有效的层范数量化方法,即Power-of-Two Factor(PTF)。PTF的核心思想是为不同的信道配备不同的因子,而不是不同的量化参数。给定量化位宽b,输入活动X∈RB×L×C,逐层量化参数s,zp∈R1,以及PTFα∈NC,则量化活动XQ可以公式化为:

dcf6441a73f2b325c412c3afdf2f9dc4.png

其中部分参数如下:

16e1fd60e95d0ddbe341f70501d90dfb.png

Softmax quantized with Log-Int-Softmax (LIS)

注意图的存储和计算是变压器结构的瓶颈,因此研究者希望将其量化到极低的位宽(例如4位)。然而,如果直接实现4位均匀量化,则会出现严重的精度退化。研究者观察到分布集中在Softmax输出的一个相当小的值上,而只有少数异常值具有接近1的较大值。基于以下可视化,对于具有密集分布的小值区间,Log2保留了比均匀更多的量化区间。

9bc8fbed0e57c08bc67976b9be68a8a0.png

将Log2量化与i-exp(i-BERT提出的指数函数的多项式近似)相结合,提出了LIS,这是一个仅整数、更快、低功耗的Softmax。

整个过程如下所示。

3b96be61e246213a496b483fbc810b12.png

03

实验&可视化

Comparison of the top-1 accuracy with state-of-the-art methods on ImageNet dataset

095088d0d342bd0b05143e586f02b7c2.png

32fa6fca585a1f1c2f772adf1b1e7ad3.png

将注意力图可视化,以查看均匀量化和LIS之间的差异,如上图所示。当两者都使用8位时,均匀量化集中在高激活区域,而LIS在低激活区域保留更多纹理,这保留了注意力图的更多相对秩。在8位的情况下,这种差异不会产生太大的差异。然而,当量化到较低的位宽时,如6位和4位的情况所示,均匀量化会急剧退化,甚至使所有关注区域失效。相反,LIS仍然表现出类似于8位的可接受性能。

183bcedf25abcde63bfc688daf12b2c8.png

Channel-wise minimum and maximum values of Vision Transformers and ResNets

© THE END 

转载请联系本公众号获得授权

23686331dc34e1d748488c377e47e19d.gif

计算机视觉研究院学习群等你加入!

da1d603aba4cd65e8099249cd92602df.png

72c278d98d3b92c6ae13d8da6e61a8c1.png

3dafa80435f96c21b2a4226396e451a9.png

2020a6bad1800e40a045480358fb8a94.png

点击“阅读原文”,立即合作咨询

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机视觉研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值