推荐:FQ-ViT——全量化视觉Transformer的革新
项目地址:https://gitcode.com/gh_mirrors/fq/FQ-ViT
在人工智能领域,Transformer架构已经在各种计算机视觉(CV)任务中展现了卓越的表现。然而,与传统的卷积神经网络(CNNs)相比,Transformer通常拥有更多的参数和更高的计算成本,这使得它们在资源有限的硬件设备上的部署成为一个挑战。最近,由Megvii Research和清华大学联合推出的开源项目FQ-ViT,为解决这一问题提供了一种创新解决方案。
项目介绍
FQ-ViT是首个实现全量化(fully quantized)的视觉Transformer模型。项目的主要贡献在于对Transformer特有的层归一化(LayerNorm)和Softmax进行有效量化,解决了以往方法在这两个关键模块上量化时性能严重下降的问题。具体来说,FQ-ViT引入了两项创新:
-
Power-of-Two Factor (PTF) —— 用于层归一化的量化策略,通过给不同通道分配不同的幂次因子,而不是不同的量化尺度,以减少因通道间差异导致的量化误差。
-
Log-Int-Softmax (LIS) —— 对Softmax的量化改进,利用Log2量化和i-exp(I-BERT中的指数函数近似)来实现仅整数运算、更快、低消耗的Softmax。
技术分析
FQ-ViT的技术核心在于针对Transformer结构的特点进行优化。对于层归一化,项目发现Transformer的通道间变化比CNN更为显著,这启发了PTF的设计。而对于Softmax,由于其输出分布中心在一个较小值上,FQ-ViT采用LIS保留了小值区间的更多量化区间,提高了精度。
应用场景
FQ-ViT适合于任何需要在边缘设备或资源受限环境部署Transformer模型的情况,如智能手机、物联网设备等。特别适用于需要高效运行视觉任务且对内存和计算效率有严格要求的应用。
项目特点
- 全量化: 首个成功量化包括LayerNorm和Softmax在内的完整Transformer模型。
- 创新技术: 利用PTF和LIS解决了层归一化和Softmax量化难题,实现了高性能和低功耗。
- 易用性: 提供清晰的代码结构和易于理解的文档,方便研究人员和开发者复现和扩展工作。
- 广泛适用: 支持多种Vision Transformer模型,如DeiT、ViT和Swin Transformer,适用于不同的应用场景。
要开始使用FQ-ViT,请遵循项目README文件中的安装、数据准备和运行步骤。如果你对此领域的工作感兴趣,欢迎加入他们的团队!
在你的项目中尝试FQ-ViT,开启高效的Transformer模型量化之旅吧!