一、不定积分
1、定义
如果函数 F(x) 满足 F′(x) = f(x) ,则称 F(x) 是 f(x) 的一个原函数。
不定积分 f(x) dx 表示 f(x) 的所有原函数,通常写成:\
int f(x) dx=F(x)+C 。其中,C是积分常数,表示原函数的不确定性。 f(x) 是被积函数,dx表示对 x 的积分变量。 不定积分的结果是一个函数簇,而不是一个具体的数值。
2、基本公式
常数积分 ∫k dx=kx+C (其中 k 是常数)
幂函数积分
指数函数积分
对数函数积分
三角函数积分
反三角函数积分
3、换元积分
3.1、第一类换元积分法
第一步:寻找变量替换函数(u=g(x))
第二步:将第一步所化变量求导,变化成 u 的一阶导数
第三步:将积分中所有x标志的内容用u来替换
第四步:求解新的简单积分
第五步:将u部分换成x,加上常数C,得到x的不定积分结果
例如1:求解:2cos2x dx
第一步:替换变量 u= 2x
第二步:u 求导为 2
第三步:替换x内容,cos(2x) => cos(u) ,dx => 1/2 *du,得到 cosu du
第四步:得原函数为 sinu
第五步: sin2x +C
例如2:求解:∫2xcos(x) dx (x
是x 的平方)
第一步:替换变量 u = x
第二步:求导 u 得 2x
第三步:dx => 1/2x *du ,cos(x) =>cos(u) ,得到
cosu du
第四步:得原函数 sinu
第五步:sinx +c
例如3:
第一步:设 t= ,则x =
第二步:求解dx = /x *dt (此步已经得出答案)
第三步:将t带入x,得到
/t * t/
dt =>
1 dt
第四步:得t原函数 t
第五步:得 + C
3.2、第二类换元法
第二类换元积分法通常涉及三角函数替换或带根号形式的替换。操作方法与第一类换元相似(区别:在根号形式下,第一类换元法容易出现循环,导致替换不生效;在三角函数等特殊类型下,第一类换元太过繁琐,第二类可直接替换)
例如:sqrt{1−x^{2} },在第一类换元下,会导致出现替换变量与原变量同一效果。但是将x变成三角函数就可以直接求解
第一步:设x=sin(t)
第二步:求dx =cos(t) dt
第三步:带入函数, sqrt{1−x^{2} } => cos(t),dx => cos(t) dt 得到 cos(t)/|cost(t)| dt ;由于 sqrt{1−x^{2} } 不等于0 ,得到 t 处于 (-
/2,
/2)之间,则cost(t) 位于(0,1),则变成
1dt
第四步:得原函数 t
第五步:替换得到 arcsin(x) +C
二、定积分
表示函数 f(x) 在区间 [a,b] 上的累积效应或面积。
1、性质
线性 :常数可外放,函数加减可分别积分后加减
区间可加性:若区间为 [a,b] 且a<=c<=b 。那么可以分为区间 [a,c] +[c,b] 两部分积分之和。
积分上下限交换:积分上下限互相交换,两个积分互为反数。
积分中值定理:若函数在[a,b]连续,那必然存在一个中间值c使 f(x) (b-a) 的值等于区间面积。
2、基本定理
如果 f(t) 在区间 [a,b]上连续,则积分上限函数,
在区间 [a,b] 上可导,并且其导数为: F′(x)=f(x)。(证明不定积分和微分互为逆运算)
如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:
(证明定积分和不定积分之间的联系,使得定积分的计算变得简便)
3、定积分换元法
步骤与不定积分第一类换元方法相同,在最后带入具体参数值进行运算,得到准确数值。
例如1:
第一步:令 t = sqrt{2x+1} ,得到 x=(t-1 )/2
第二步:求 dx 的结果 t dt
第三步:全部替换 函数体=>(t+3)/2t , dx=>t dt ,x(0,4) =>t(1,3)
第四步:整合元素得到 ,求原函数 1/6 *t
+3/2 * t
第五步:将t 的值带入,1/6 * 3+3/2*3- 1/6*1
-3/2*1 = 22/3
三、总结
不定积分与定积分求解方法一直,一个推算原函数,一个推算具体数值,所以在求解最后一个进行带入x或具体数值。