高等数学 不定积分与定积分

一、不定积分

1、定义

        如果函数 F(x) 满足 F′(x) = f(x) ,则称 F(x) 是 f(x) 的一个原函数。

不定积分 \int f(x) dx  表示 f(x) 的所有原函数,通常写成:\\intint f(x) dx=F(x)+C 。其中,C是积分常数,表示原函数的不确定性。 f(x) 是被积函数,dx表示对 x 的积分变量。 不定积分的结果是一个函数簇,而不是一个具体的数值。

2、基本公式

        常数积分  ∫k dx=kx+C (其中 k 是常数)

        幂函数积分 

        指数函数积分  

        对数函数积分 

        三角函数积分

        反三角函数积分

3、换元积分

3.1、第一类换元积分法

        第一步:寻找变量替换函数(u=g(x))

        第二步:将第一步所化变量求导,变化成 u 的一阶导数

        第三步:将积分中所有x标志的内容用u来替换

        第四步:求解新的简单积分

        第五步:将u部分换成x,加上常数C,得到x的不定积分结果

例如1:求解:\int2cos2x dx  

    第一步:替换变量 u= 2x 

    第二步:u 求导为 2

    第三步:替换x内容,cos(2x) => cos(u) ,dx => 1/2 *du,得到 \intcosu du

    第四步:得原函数为 sinu

    第五步: sin2x +C  

例如2:求解:∫2xcos⁡(x^2) dx (x^{2} 是x 的平方)

     第一步:替换变量 u = x^{2}

     第二步:求导 u 得 2x

     第三步:dx => 1/2x *du ,cos(x^{2}) =>cos(u) ,得到  \intcosu du

     第四步:得原函数 sinu

     第五步:sinx^{2} +c

例如3:

      第一步:设 t= sqrt{1+x^{2}} ,则x = sqrt { t^{2}-1}

      第二步:求解dx = sqrt{1+x^{2}}/x  *dt (此步已经得出答案)

      第三步:将t带入x,得到  \int  sqrt { t^{2}-1}/t  * t/ sqrt { t^{2}-1} dt => \int 1 dt

      第四步:得t原函数 t

      第五步:得  sqrt{1+x^{2}} + C

3.2、第二类换元法

        第二类换元积分法通常涉及三角函数替换或带根号形式的替换。操作方法与第一类换元相似(区别:在根号形式下,第一类换元法容易出现循环,导致替换不生效;在三角函数等特殊类型下,第一类换元太过繁琐,第二类可直接替换)

例如:sqrt{1−x^{2} },在第一类换元下,会导致出现替换变量与原变量同一效果。但是将x变成三角函数就可以直接求解

        第一步:设x=sin(t)

        第二步:求dx =cos(t) dt

        第三步:带入函数, sqrt{1−x^{2} }  => cos(t),dx => cos(t) dt 得到 \int cos(t)/|cost(t)| dt ;由于 sqrt{1−x^{2} } 不等于0 ,得到 t 处于 (-\pi/2,\pi/2)之间,则cost(t) 位于(0,1),则变成   \int  1dt

        第四步:得原函数 t

        第五步:替换得到 arcsin(x) +C

二、定积分

        表示函数 f(x) 在区间  [a,b] 上的累积效应或面积

1、性质

        线性 :常数可外放,函数加减可分别积分后加减

        区间可加性:若区间为 [a,b] 且a<=c<=b 。那么可以分为区间 [a,c] +[c,b] 两部分积分之和。

        积分上下限交换:积分上下限互相交换,两个积分互为反数。

        积分中值定理:若函数在[a,b]连续,那必然存在一个中间值c使 f(x) (b-a) 的值等于区间面积。

2、基本定理

         如果 f(t) 在区间 [a,b]上连续,则积分上限函数

在区间 [a,b] 上可导,并且其导数为: F′(x)=f(x)。(证明不定积分和微分互为逆运算

        如果 F(x)是 f(x)的一个原函数,即 F′(x)=f(x),则:

证明定积分和不定积分之间的联系,使得定积分的计算变得简便)

3、定积分换元法

        步骤与不定积分第一类换元方法相同,在最后带入具体参数值进行运算,得到准确数值。

例如1:

        第一步:令 t = sqrt{2x+1} ,得到 x=(t^{2}-1 )/2 

        第二步:求 dx 的结果 t dt

        第三步:全部替换 函数体=>(t^{2}+3)/2t , dx=>t dt ,x(0,4) =>t(1,3)

        第四步:整合元素得到 ,求原函数 1/6 *t^{3}+3/2 * t 

        第五步:将t 的值带入,1/6 * 3^{3}+3/2*3- 1/6*1^{3}-3/2*1 = 22/3

三、总结

        不定积分与定积分求解方法一直,一个推算原函数,一个推算具体数值,所以在求解最后一个进行带入x或具体数值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值