【知识点】(四)不定积分和定积分

本文详细介绍了微积分中的不定积分和定积分。内容涵盖不定积分的概念、基本公式、凑微分法、换元积分法、分部积分法、有理函数积分及三角函数积分。同时,讨论了定积分的定义、性质、计算方法,包括牛顿-莱布尼茨公式和换元积分法。此外,文章还涉及原函数、可积性和反常积分的常见公式与审敛法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

不定积分

1. 概念和性质
  • 概念:设 F ( x ) F(x) F(x) f ( x ) f(x) f(x) 的一个原函数,则称 f ( x ) f(x) f(x) 的所有原函数 F ( x ) + C F(x)+C F(x)+C f ( x ) f(x) f(x) 的不定积分,记为 ∫ f ( x ) d x \int f(x)dx f(x)dx,即 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C f(x)dx=F(x)+C
  • 性质 d d x ∫ f ( x ) d x = f ( x ) , ∫ d f ( x ) = ∫ f ′ ( x ) d x = f ( x ) + C \frac{d}{dx} \int f(x)dx=f(x),\int df(x)=\int f^{'}(x)dx=f(x)+C dxdf(x)dx=f(x)df(x)=f(x)dx=f(x)+C
2. 基本公式
  • ∫ x α d x = 1 α + 1 x α + 1 + C , ∫ 1 x 2 d x = − 1 x + C , ∫ 1 x d x = 2 x + C , ∫ 1 x d x = ln ⁡ ∣ x ∣ + C \int x^{α}dx=\frac{1}{α+1}x^{α+1} + C, \int \frac{1}{x^2}dx=-\frac{1}{x}+C, \int \frac{1}{\sqrt{x}}dx=2\sqrt{x} +C, \int \frac{1}{x}dx = \ln|x|+C xαdx=α+11xα+1+Cx21dx=x1+Cx 1dx=2x +Cx1dx=lnx+C

  • ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C , ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \tan x dx = -\ln|\cos x|+C, \int \sec x dx = \ln|\sec x + \tan x|+C tanxdx=lncosx+Csecxdx=lnsecx+tanx+C ∫ sec ⁡ 2 x d x = tan ⁡ x + C , ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C \int \sec^{2} x dx = \tan x+C, \int \sec x \tan xdx = \sec x+C sec2xdx=tanx+Csecxtanxdx=secx+C

  • ∫ 1 a 2 + x 2 = 1 a a r c t a n x a + C , ∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \int \frac{1}{a^2+x^2} = \frac{1}{a}arctan\frac{x}{a}+C,\int \frac{1}{a^2-x^2} dx = \frac{1}{2a}\ln |\frac{a+x}{a-x}| + C a2+x21=a1arctanax+Ca2x21dx=2a1lnaxa+x+C

  • ∫ 1 a 2 − x 2 = arcsin ⁡ x a + C , ∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{a^2-x^2} } = \arcsin \frac{x}{a} + C,\int \frac{1}{\sqrt{ x^2 ± a^2} }dx=\ln |x + \sqrt{x^2±a^2}|+C a2x2 1=arcsinax+Cx2±a2 1dx=lnx+x2±a2 +C

3. 凑微分法

概念:设 F ( ϕ ( x ) ) F(\phi(x)) F(ϕ(x)) f ( ϕ ( x ) ) f(\phi(x)) f(ϕ(x)) 的一个原函数,则 ∫ f [ ϕ ( x ) ] ϕ ′ ( x ) d x = ∫ f [ ϕ ( x ) ] d ϕ ( x ) = F ( ϕ ( x ) ) + C \int f[\phi(x)]\phi^{'}(x)dx=\int f[\phi(x)]d\phi(x) =F(\phi(x))+C f[ϕ(x)]ϕ(x)dx=f[ϕ(x)]dϕ(x)=F(ϕ(x))+C

公式

  • ∫ f ( a x + b ) d x = 1 a ∫ f ( a x + b ) d ( a x + b ) , ∫ 1 x f ( ln ⁡ x ) d x = ∫ f ( ln ⁡ x ) d ( ln ⁡ x ) \int f(ax+b)dx = \frac{1}{a} \int f(ax+b)d(ax+b), \int \frac{1}{x} f(\ln x)dx = \int f(\ln x)d (\ln x) f(ax+b)dx=a1f(ax+b)d(ax+b)x1f(lnx)dx=f(lnx)d(lnx)

  • ∫ x n − 1 f ( a x n + b ) d x = 1 a n ∫ f ( a x n + b ) d ( a x n + b ) \int x^{n-1} f(ax^{n}+b)dx = \frac{1}{an} \int f(ax^{n}+b)d(ax^{n}+b) xn1f(axn+b)dx=an1f(axn+b)d(axn+b) 特 别 地 , ∫ 1 x 2 f ( 1 x ) d x = − ∫ f ( 1 x ) d ( 1 x ) , ∫ 1 x f ( x ) d x = 2 ∫ f ( x ) d ( x ) 特别地, \int \frac{1}{x^2} f(\frac{1}{x})dx = - \int f(\frac{1}{x})d (\frac{1}{x} ), \int \frac{1}{\sqrt{x}} f(\sqrt{x})dx = 2 \int f(\sqrt{x} )d (\sqrt{x} ) x21f(x1)dx=f(x1)d(x1)x 1f(x )dx=2f(x )d(x )

  • ∫ 1 1 + x 2 f ( arctan ⁡ x ) d x = ∫ f ( arctan ⁡ x ) d arctan ⁡ x , ∫ 1 1 − x 2 f ( arcsin ⁡ x ) d x = ∫ f ( arcsin ⁡ x ) d arcsin ⁡ x , \int \frac{1}{1+x^2}f(\arctan x)dx=\int f(\arctan x)d\arctan x, \int \frac{1}{\sqrt{1-x^2}}f(\arcsin x)dx=\int f(\arcsin x)d\arcsin x, 1+x21f(arctanx)dx=f(arctanx)darctanx1x2 1f(arcsinx)dx=f(arcsinx)darcsinx

4. 换元积分法

概念:设 x = ϕ ( t ) x=\phi(t) x=ϕ(t) 可导, F ( t ) F(t) F(t) f [ ϕ ( t ) ] ϕ ′ ( t ) f[\phi(t)]\phi^{'}(t) f[ϕ(t)]ϕ(t) 的一个原函数,则 ∫ f ( x ) d x = ∫ f [ ϕ ( t ) ] d ϕ ( t ) = ∫ f [ ϕ ( t ) ] ϕ ′ ( t ) d t = F ( t ) + C = F ( ϕ − 1 ( x ) ) + C \int f(x)dx=\int f[\phi(t)]d\phi(t) =\int f[\phi(t)]\phi^{'}(t)dt=F(t)+C=F(\phi^{-1}(x))+C f(x)dx=f[ϕ(t)]dϕ(t)=f[ϕ(t)]ϕ(t)dt=F(t)+C=F(ϕ1(x))+C

常用替换

  • 三角函数:
    a 2 − x 2 , x = a sin ⁡ t ; x 2 + a 2 , x = a tan ⁡ t ; x 2 − a 2 , x = a sec ⁡ t \sqrt{a^2-x^2},x=a\sin t; \sqrt{x^2+a^2},x=a\tan t; \sqrt{x^2-a^2}, x=a\sec t a2x2 x=asintx2+a2 x=atantx2a2 x=asect a x 2 + b x + c 配 方 \sqrt{ax^2+bx+c} \quad 配方 ax2+bx+c

  • 倒代换:分母幂次比分子高出两次及以上, t = 1 x t=\frac{1}{x} t=x1

  • 复杂函数直接代换:复杂函数如 a x , e x , ln ⁡ x , arcsin ⁡ x , arctan ⁡ x , n a^x, e^x, \ln x, \arcsin x, \arctan x,\sqrt[n]{} ax,ex,lnx,arcsinx,arctanxn t = 复 杂 函 数 t=复杂函数 t=

5. 分部积分法

概念:函数 u = u ( x ) , v = v ( x ) u=u(x), v=v(x) u=u(x),v=v(x) 具有连续的导数,且 ∫ v d u \int vdu vdu ∫ u d v \int udv udv 易求,则 ∫ u d v = u v − ∫ v d u \int udv=uv-\int vdu udv=uvvdu

  • 函数求积难度从易到难顺序:
    e x = 三 角 函 数 sin ⁡ > 多 项 式 P n ( x ) > 反 三 角 函 数 arcsin ⁡ 和 对 数 函 数 ln ⁡ e^x=三角函数\sin>多项式 P_n(x)>反三角函数\arcsin 和 对数函数 \ln ex=sin>Pn(x)>arcsinln,函数相乘求积分,容易的设为 v v v,难求的设为 u u u
  • 前两项和多项式相乘 P n ( x ) P_n(x) Pn(x) 可用表格积分法: ∫ ( x 3 + 2 x + 6 ) e 2 x d x \int (x^3+2x+6)e^{2x}dx (x3+2x+6)e2xdx
u u u 求导 x 3 + 2 x + 6 x^3+2x+6 x3+2x+6 3 x 2 + 2 3x^2+2 3x2+2 6 x 6x 6x 6 6 6 0 0 0
v v v 积分 e 2 x e^{2x} e2x 1 2 e 2 x \frac{1}{2}e^{2x} 21e2x 1 4 e 2 x \frac{1}{4}e^{2x} 41e2x 1 8 e 2 x \frac{1}{8}e^{2x} 81e2x 1 16 e 2 x \frac{1}{16}e^{2x} 161e2x

∫ ( x 3 + 2 x + 6 ) e 2 x d x = ( x 3 + 2 x + 6 ) ( 1 2 e 2 x ) + ( 3 x 2 + 2 ) ( 1 4 e 2 x ) + . . . + 0 ⋅ ( 1 16 e 2 x ) + C \int (x^3+2x+6)e^{2x}dx =(x^3+2x+6)(\frac{1}{2}e^{2x}) +(3x^2+2)(\frac{1}{4}e^{2x}) +... +0·(\frac{1}{16}e^{2x}) + C (x3+2x+6)e2xdx=(x3+2x+6)(21e2x)+(3x2+2)(41e2x)+...+0(161e2x)+C

6. 有理函数积分

概念:有理函数可分为假分式和真分式,假分式拆分为多项式和真分式之和。真分式积分 ∫ P n ( x ) Q m ( x ) d x ( n < m ) \int \frac{P_n(x)}{Q_m(x)}dx(n<m) Qm(x)Pn(x)dx(n<m), 可先将 Q m ( x ) Q_m(x) Qm(x) 因式分解,再根据 Q m ( x ) Q_m(x) Qm(x) 的因式把 P n ( x ) Q m ( x ) \frac{P_n(x)}{Q_m(x)} Qm(x)Pn(x) 拆分为若干有理分式之和

分解

  • Q m ( x ) Q_m(x) Qm(x) 的一次因式 ( a x + b ) (ax+b) (ax+b) 产生一项 A a x + b \frac{A}{ax+b} ax+bA
  • Q m ( x ) Q_m(x) Qm(x) k k k 重因式 ( a x + b ) k (ax+b)^{k} (ax+b)k产生一项 A 1 a x + b + A 2 ( a x + b ) 2 + . . . + A k ( a x + b ) k \frac{A_1}{ax+b}+\frac{A_2}{(ax+b)^{2}}+...+\frac{A_k}{(ax+b)^{k}} ax+bA1+(ax+b)2A2+...+(ax+b)kAk

求积

  • ∫ A a x + b d x = A a ln ⁡ ∣ a x + b ∣ + C \int \frac{A}{ax+b}dx=\frac{A}{a}\ln |ax+b| +C ax+bAdx=aAlnax+b+C
  • ∫ A k ( a x + b ) k d x = − A k a ∫ 1 ( a x + b ) k d ( a x + b ) \int \frac{A_k}{(ax+b)^{k}}dx=-\frac{A_k}{a} \int\frac{1}{(ax+b)^{k}}d(ax+b) (ax+b)kAkdx=aAk(ax+b)k1d(ax+b)
7. 三角函数积分

多项式 ∫ sin ⁡ m x cos ⁡ n x d x \int \sin^{m} x \cos^{n} x dx sinmxcosnxdx

  • sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 次方至少一个为奇数, sin ⁡ x \sin x sinx 次方为奇数, t = cos ⁡ x t=\cos x t=cosx cos ⁡ x \cos x cosx 次方为奇数, t = sin ⁡ x t=\sin x t=sinx
  • sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 次方均是正偶数, sin ⁡ x cos ⁡ x = 1 2 sin ⁡ 2 x , sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 , cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 \sin x \cos x=\frac{1}{2} \sin 2x, \sin^{2} x=\frac{1-\cos 2x}{2},\cos^{2} x=\frac{1+\cos 2x}{2} sinxcosx=21sin2xsin2x=21cos2xcos2x=21+cos2x
  • sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 次方均是负偶数, t = t a n x t=tanx t=tanx
  • sin ⁡ x \sin x sinx cos ⁡ x \cos x cosx 次方分别是正偶数和负偶数, sin ⁡ 2 x = 1 − cos ⁡ 2 x \sin^{2}x=1-\cos^{2} x sin2x=1cos2x

分式

  • d x a sin ⁡ x + b , d x a cos ⁡ x + b , d x a sin ⁡ x + b cos ⁡ x + c , t = tan ⁡ x 2 \frac{dx}{a\sin x +b},\frac{dx}{a\cos x +b},\frac{dx}{a\sin x +b\cos x + c},t=\tan \frac{x}{2} asinx+bdxacosx+bdxasinx+bcosx+cdxt=tan2x

sin ⁡ x = 2 sin ⁡ x 2 cos ⁡ x 2 , cos ⁡ x = cos ⁡ 2 x 2 − sin ⁡ 2 x 2 \sin x=2\sin \frac{x}{2}\cos \frac{x}{2}, \cos x=\cos^{2}\frac{x}{2} - \sin^{2}\frac{x}{2} sinx=2sin2xcos2xcosx=cos22xsin22x

  • ∫ R ( sin ⁡ x ) cos ⁡ x d x , t = sin ⁡ x ; ∫ R ( cos ⁡ x ) sin ⁡ x d x , t = cos ⁡ x ; ∫ R ( sin ⁡ 2 x , cos ⁡ 2 x ) d x , t = tan ⁡ x \int R(\sin x)\cos xdx,t=\sin x;\int R(\cos x)\sin xdx,t=\cos x;\int R(\sin^{2} x, \cos^{2} x)dx,t=\tan x R(sinx)cosxdxt=sinxR(cosx)sinxdxt=cosxR(sin2x,cos2x)dxt=tanx

定积分

1. 概念和性质
  • 概念:设函数 y = f ( x ) y=f(x) y=f(x) [ a , b ] [a, b] [a,b] 上有定义,在 ( a , b ) (a, b) (a,b) 内任意插入 n − 1 n-1 n1 个分点 x 1 , x 2 , . . . , x n − 1 x_1, x_2, ... , x_{n-1} x1,x2,...,xn1 使得 a = x 0 < x 1 < x 2 < . . . < x n − 1 < x n = b a=x_0<x_1<x_2<...<x_n-1<x_n=b a=x0<x1<x2<...<xn1<xn=b 在第 i i i 个小区间 [ x i − 1 , x i ] [x_{i-1}, x_i] [xi1,xi] 任取一点 ξ i \xi_i ξi,记 Δ x i = x i − x i − 1 ( i = 1 , 2 , . . . , n ) , λ = m a x { Δ x 1 , Δ x 2 , . . . , Δ x n } \Delta x_i=x_i-x_{i-1}(i=1, 2, ..., n),\lambda = max\{ \Delta x_1, \Delta x_2, ..., \Delta x_n\} Δxi=xixi1(i=1,2,...,n)λ=max{Δx1,Δx2,...,Δxn} lim ⁡ λ → 0 ∑ i = 1 n f ( ξ i ) Δ i = ∫ a b f ( x ) d x \lim_{\lambda \to 0} \sum_{i=1}^{n}f(\xi_i)\Delta_i=\int_{a}^{b}f(x)dx λ0limi=1nf(ξi)Δi=abf(x)dx

  • 性质 ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x , ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ c b f ( x ) d x \int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx, \int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx abf(x)dx=baf(x)dxabf(x)dx=acf(x)dx+cbf(x)dx

2. 定积分计算
  • 牛顿-莱布尼茨公式 ∫ a b f ( x ) d x = F ( x ) ∣ a b = F ( b ) − F ( a ) \int_{a}^{b}f(x)dx=F(x)|_{a}^{b}=F(b)-F(a) abf(x)dx=F(x)ab=F(b)F(a)

  • 换元积分法:从左到右是换元积分法,从右到左是凑微分法
    ∫ a b f ( x ) d x = ∫ α β f ( ϕ ′ ( t ) ) ϕ ( t ) d t , \int_{a}^{b}f(x)dx=\int_{\alpha}^{\beta}f(\phi^{'}(t) )\phi(t)dt, abf(x)dx=αβf(ϕ(t))ϕ(t)dt

  • 分部积分法 ∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_{a}^{b}udv=uv|_{a}^{b}-\int_{a}^{b}vdu abudv=uvababvdu

4. 计算工具
  • 对称区间奇偶函数 ∫ − a a f ( x ) d x = { 2 ∫ 0 a f ( x ) d x f(x)偶函数 0 f(x)奇函数 \int_{-a}^{a}f(x)dx=\begin{cases} 2\int_{0}^{a} f(x)dx& \text{f(x)偶函数}\\ 0& \text{f(x)奇函数} \end{cases} aaf(x)dx={20af(x)dx0f(x)偶函数f(x)奇函数

  • 对称区间非奇偶函数 ∫ − a a f ( x ) d x = ∫ 0 a [ f ( x ) + f ( − x ) ] d x \int_{-a}^{a}f(x)dx=\int_{0}^{a}[f(x)+f(-x)]dx aaf(x)dx=0a[f(x)+f(x)]dx

  • 周期函数 ∫ 0 n T f ( x ) d x = n ∫ 0 T f ( x ) d x , ∫ a a + T f ( x ) d x = ∫ 0 T f ( x ) d x , ∫ T a + T f ( x ) d x = ∫ 0 a f ( x ) d x \int_{0}^{nT}f(x)dx=n\int_{0}^{T}f(x)dx, \int_{a}^{a+T}f(x)dx=\int_{0}^{T}f(x)dx, \int_{T}^{a+T}f(x)dx=\int_{0}^{a}f(x)dx 0nTf(x)dx=n0Tf(x)dxaa+Tf(x)dx=0Tf(x)dxTa+Tf(x)dx=0af(x)dx

  • 积分区间 ∫ 0 π \int_{0}^{\pi} 0π 积分函数 sin ⁡ x \sin x sinx
    ∫ 0 π x f ( sin ⁡ x ) d x = π 2 ∫ 0 π f ( sin ⁡ x ) d x = π ∫ 0 π 2 f ( sin ⁡ x ) d x \int_{0}^{\pi } xf(\sin x)dx =\frac{\pi }{2}\int_{0}^{\pi } f(\sin x)dx =\pi \int_{0}^{\frac{\pi}{2} } f(\sin x)dx 0πxf(sinx)dx=2π0πf(sinx)dx=π02πf(sinx)dx

∫ 0 π f ( sin ⁡ x ) d x = 2 ∫ 0 π 2 f ( sin ⁡ x ) d x , ∫ 0 π sin ⁡ x d x = 2 \int_{0}^{\pi } f(\sin x)dx =2\int_{0}^{\frac{\pi}{2} } f(\sin x)dx, \int_{0}^{\pi }\sin xdx=2 0πf(sinx)dx=202πf(sinx)dx0πsinxdx=2

∫ 0 π 2 f ( cos ⁡ x ) d x = ∫ 0 π 2 f ( sin ⁡ x ) d x , ∫ 0 π 2 cos ⁡ x d x = ∫ 0 π 2 sin ⁡ x d x = 1 \int_{0}^{\frac{\pi}{2} } f(\cos x)dx =\int_{0}^{\frac{\pi}{2} } f(\sin x)dx, \int_{0}^{\frac{\pi}{2} }\cos xdx =\int_{0}^{\frac{\pi}{2} }\sin xdx=1 02πf(cosx)dx=02πf(sinx)dx02πcosxdx=02πsinxdx=1

∫ 0 π 2 sin ⁡ n x d x = ∫ 0 π 2 cos ⁡ n x d x = { n − 1 n ⋅ n − 3 n − 2 . . . ⋅ 2 3 n为奇数 n − 1 n ⋅ n − 3 n − 2 . . . ⋅ 1 2 ⋅ π 2 n为偶数 \int_{0}^{\frac{\pi}{2}} \sin ^{n}xdx =\int_{0}^{\frac{\pi}{2}} \cos ^{n}xdx =\begin{cases} \frac{n-1}{n}·\frac{n-3}{n-2} ... ·\frac{2}{3} & \text{n为奇数}\\ \frac{n-1}{n}·\frac{n-3}{n-2} ... ·\frac{1}{2}·\frac{\pi}{2} & \text{n为偶数} \end{cases} 02πsinnxdx=02πcosnxdx={nn1n2n3...32nn1n2n3...212πn为奇数n为偶数

  • 区间再现公式 x = a + b − t x=a+b-t x=a+bt
    I = ∫ a b f ( x ) d x = ∫ b a f ( a + b − t ) ( − d t ) = ∫ a b f ( a + b − t ) d t I=\int_{a}^{b}f(x)dx =\int_{b}^{a}f(a+b-t)(-dt) =\int_{a}^{b}f(a+b-t)dt I=abf(x)dx=baf(a+bt)(dt)=abf(a+bt)dt

原函数和可积

原函数:如果 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] ( a , b ) (a, b) (a,b) 上有任意一点 F ′ ( x ) = f ( x ) F^{'}(x)=f(x) F(x)=f(x),则 f ( x ) f(x) f(x) 在区间 [ a , b ] [a,b] [a,b] ( a , b ) (a, b) (a,b) 有原函数。
可积:如果 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上的定积分存在,则 f ( x ) f(x) f(x) [ a , b ] [a,b] [a,b] 上可积

原函数存在定理:连续、振荡间断点有原函数,可去、跳跃、无穷间断点无原函数。

可积:连续、有界且有限间断点、单调有界可积,无界不可积。

在这里插入图片描述
振荡间断点 f ( x ) f(x) f(x) 存在原函数,有界可积
f ( x ) = { 2 x sin ⁡ 1 x − cos ⁡ 1 x x ≠ 0 0 x = 0 f(x)=\begin{cases} 2x\sin \frac{1}{x}-\cos \frac{1}{x} & x ≠ 0 \\ 0 & x = 0 \end{cases} f(x)={2xsinx1cosx10x=0x=0
在这里插入图片描述
振荡间断点 f ( x ) f(x) f(x) 存在原函数,无界不可积
f ( x ) = { 2 x sin ⁡ 1 x 2 − 2 x cos ⁡ 1 x 2 x ≠ 0 0 x = 0 f(x)=\begin{cases} 2x\sin \frac{1}{x^2}-\frac{2}{x} \cos \frac{1}{x^2} & x ≠ 0 \\ 0 & x = 0 \end{cases} f(x)={2xsinx21x2cosx210x=0x=0

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

反常积分

1. 常用公式

在这里插入图片描述
在这里插入图片描述

2. 反常积分审敛法

找等价无穷小

x → 0 x \to 0 x0 时, 1 − cos ⁡ 3 x 1-\cos 3x 1cos3x ~ 9 2 x 2 \frac{9}{2}x^2 29x2 ln ⁡ ( 1 − x 2 ) 3 \sqrt[3]{\ln (1-x^2)} 3ln(1x2) ~ − x 2 3 -x^{\frac{2}{3}} x32 ln ⁡ ( cos ⁡ x ) \ln(\cos x) ln(cosx) ~ − 1 2 x 2 -\frac{1}{2}x^2 21x2

x → ∞ x \to \infin x 时, x x ( 1 + x 2 ) \frac{x}{\sqrt{x}(1+x^2)} x (1+x2)x ~ x x x 2 \frac{x}{\sqrt{x}x^2} x x2x ~ x − 3 2 x^{-\frac{3}{2}} x23;当 x → 1 x \to 1 x1 时, ln ⁡ x \ln x lnx ~ x − 1 x-1 x1

无穷大和无穷小比较

x → 0 x \to 0 x0 时, 无穷小按趋近于 0 0 0 速度从快到慢排序: x 2 = 1 − cos ⁡ 3 x > x 5 > 1 ln ⁡ x x^2=1-\cos^3 x>\sqrt[5]{x}>\frac{1}{\ln x} x2=1cos3x>5x >lnx1

x → ∞ x \to \infin x 时, 无穷大按趋近于 ∞ \infin 速度从快到慢排序: e x > x 2 > x 3 > ln ⁡ 4 x e^x > x^2 > \sqrt[3]{x}> \ln^4 x ex>x2>3x >ln4x

x → 0 x \to 0 x0 时, ln ⁡ x \ln x lnx 趋近于 ∞ \infin 的速度比 1 x \frac{1}{x} x1 的任意正数次幂都慢

x → + ∞ x \to +\infin x+ 时, ln ⁡ x \ln x lnx 趋近于 ∞ \infin 的速度比 x x x 的任意正数次幂都慢

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

参考资料

《微积分同步练习与模拟试题》刘强,孙激流
《张宇高等数学18讲》张宇
《数学复习全书》李正元,尤承业,范培华
戴方勤考研数学笔记
《8个题穷尽反常积分审敛法【附带习题和答案】》心一学长

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值