一、大模型的定义
大模型是指具有数千万甚至数亿参数的深度学习模型。近年来,随着计算机技术和大数据的快速发展,深度学习在各个领域取得了显著的成果,如自然语言处理,图片生成,工业数字化等。为了提高模型的性能,研究者们不断尝试增加模型的参数数量,从而诞生了大模型这一概念。
大模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。
大模型采用预训练+微调的训练模式,在大规模数据上进行训练后,能快速适应一系列下游任务的模型。
二、大模型和小模型的区别
大模型和小模型在应用方面最大的区别是大模型偏向于全能化、通用化,而小模型一般偏向于解决某一垂直领域中的某个具体问题。比如一个图像识别小模型专门训练用来识别车牌号,对车牌号可以有很好的识别精度。但是一个图像识别大模型不仅可以识别车牌号,还可以识别我们生活中碰到的大部分图片,而且站在我们人类的视角来看,他似乎对图片中的内容有自己的理解,看起来拥有更高的智能化水平。
另外相比小模型来说,大模型通常具有更多的参数,能够学习更复杂的特征和模式。同时大模型的训练数据集也会更大,架构更为复杂,训练起来也需要更高的计算资源。
三、大模型的分类
按照输入数据类型的不同,大模型主要可以分为以下三大类:
语言大模型
是指在自然语言处理(NLP)领域中的一类大模型,通常用于处理文本数据和理解自然语言。
视觉大模型
是指在计算机视觉(CV)领域中使用的大模型,通常用于图像处理和分析。
多模态大模型
是指能够处理多种不同类型数据的大模型,例如文本、图像、音频等多模态数据。
按照应用领域的不同,大模型主要可以分为 L0、L1、L2 三个层级:
L0 通用大模型
是指可以在多个领域和任务上通用的大模型。通用大模型就像完成了大学前素质教育阶段的学生,有基础的认知能力,数学、英语、化学、物理等各学科也都懂一点。
L1 行业大模型
是指那些针对特定行业或领域的大模型。它们通常使用行业相关的数据进行预训练或微调,以提高在该领域的性能和准确度。行业大模型就像选择了某一个专业的大学生,对自己专业下的相关知识有了更深入的了解。
L2 垂直大模型
是指那些针对特定任务或场景的大模型。它们通常使用任务相关的数据进行预训练或微调,以提高在该任务上的性能和效果。垂直大模型就像研究生,对特定行业下的某个具体领域有比较深入的研究。
四、大语言模型LLM
大语言模型(Large Language Model,LLM)是大模型的子分类,是专门通过处理大量文本数据来理解和生成人类语言的AI系统,从而执行各种自然语言处理任务,如文本分类、问答、对话、内容总结等。我们最为常见的ChatGPT、百度文心一言、讯飞星火等都属于大语言模型。
五、大语言模型LLM的基础架构
目前流行的大语言模型的架构基本都沿用了当前NLP领域最热门最有效的架构—Transformer架构。Transformer架构来源于谷歌在2017年发表的论文《Attention Is All You Need》,翻译过来就是注意力就是你需要的一切。
注意力机制是大语言模型的核心机制,它让模型在处理文本时,能够同时关注输入中的所有词汇,无论句子长短,都能精准捕捉到远距离的语义关联。例如,在解析“华为公司发布了新款手机”这句话时,模型能够迅速聚焦“华为”与“手机”之间的关系,忽略“公司”或“发布”等词的干扰,这种能力使得大语言模型在处理大段文本、复杂语境时能够真正理解其表达的核心含义。
此外,大语言模型通过位置编码(Positional Encoding)的巧妙设计,模型得以理解文本中的词语位置和顺序,准确把握语言的时序特性,同时保留了高效的并行计算能力。
六、大语言模型LLM的应用场景
在企业数字化领域中,大语言模型常见的应用场景如下:
知识库问答系统:
通过提问的方式,快速查找企业知识库中的内容,并通过大模型对内容进行总结提炼并给出解决方案;如设备故障查询、设备运检查询、员工智能助手等。
问答式BI系统:
通过问答的方式让大模型进行数据库查询,并返回数据结果、可视化图形等内容,供用户进行便捷的数据分析。
智能体系统:
将大模型的自然语言能力和小模型的垂直领域能力进行整合,形成企业智能体系统,满足设备故障预测、电力负荷预测、供应商评估分析等智能化应用和预测场景。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓