Dropping tests

In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be

.

Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.

Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .

Input

The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.

Output

For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.

Sample Input

3 1
5 0 2
5 1 6
4 2
1 2 7 9
5 6 7 9
0 0

Sample Output

83
100

Hint

To avoid ambiguities due to rounding errors, the judge tests have been constructed so that all answers are at least 0.001 away from a decision boundary (i.e., you can assume that the average is never 83.4997).

 

题解:01分数规划的题,不懂的话,可以参考:

https://blog.csdn.net/Bet_C_R/article/details/78154319

这题要注意一下精度,卡的比较严;

代码:

#include <iostream>
#include <algorithm>
using namespace std;

bool cmp(double x, double y)
{
    return x>y;
}
int main()
{
    int n,k;
    double a[1500],b[1500],d[1500];
    double sum;
    while(cin>>n>>k && ( n || k ))
    {
        for(int i=0; i<n; i++)
            cin>>a[i];
        for(int i=0; i<n; i++)
            cin>>b[i];
        double left=0, mid, right=1.0;
        while(right-left>0.00001)
        {
            mid=(left+right)/2;
            //cout<<left<<" "<<right<<"   "<<mid<<endl;
            for(int i=0; i<n; i++)
                d[i]=a[i]-mid*b[i];
            sort(d,d+n,cmp);
            sum=0;
            for(int i=0; i<n-k; i++)
                sum+=d[i];
            if(sum>0) left=mid;
            else right=mid;
        }
        int ans=(int)(right*100+0.5);
        cout<<ans<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值