Tensorflow 中优化器optimizer参数 adam认识

一、先理解优点

Adam优化器
2014年12月,Kingma和Lei Ba两位学者提出了Adam优化器,结合AdaGrad和RMSProp两种优化算法的优点。对梯度的一阶矩估计(First Moment Estimation,即梯度的均值)和二阶矩估计(SecondMoment Estimation,即梯度的未中心化的方差)进行综合考虑,计算出更新步长。
主要包含以下几个显著的优点:

  1. 实现简单,计算高效,对内存需求少
  2. 参数的更新不受梯度的伸缩变换影响
  3. 超参数具有很好的解释性,且通常无需调整或仅需很少的微调
  4. 更新的步长能够被限制在大致的范围内(初始学习率)
  5. 能自然地实现步长退火过程(自动调整学习率)
  6. 很适合应用于大规模的数据及参数的场景
  7. 适用于不稳定目标函数
  8. 适用于梯度稀疏或梯度存在很大噪声的问题
    综合Adam在很多情况下算作默认工作性能比较优秀的优化器。

二、记录下公式

在这里插入图片描述

三、伪代码

四、问题及改进

虽然Adam算法目前成为主流的优化算法,不过在很多领域里(如计算机视觉的对象识别、NLP中的机器翻译)的最佳成果仍然是使用带动量(Momentum)的SGD来获取到的。Wilson 等人的论文结果显示,在对象识别、字符级别建模、语法成分分析等方面,自适应学习率方法(包括AdaGrad、AdaDelta、RMSProp、Adam等)通常比Momentum算法效果更差。

针对Adam等自适应学习率方法的问题,主要两个方面的改进:
1、解耦权重衰减
在每次更新梯度时,同时对其进行衰减(衰减系数w略小于1),避免产生过大的参数。
在Adam优化过程中,增加参数权重衰减项。解耦学习率和权重衰减两个超参数,能单独调试优化两个参数。

2、修正指数移动均值
最近的几篇论文显示较低的[if !msEquation][endif](如0.99或0.9)能够获得比默认值0.999更佳的结果,暗示出指数移动均值本身可能也包含了缺陷。例如在训练过程中,某个mini-batch出现比较大信息量的梯度信息,但由于这类mini-batch出现频次很少,而指数移动均值会减弱他们的作用(因为当前梯度权重及当前梯度的平方的权重,权重都比较小),导致在这种场景下收敛比较差。
AMSGrad 使用最大的来更新梯度,而不像Adam算法中采用历史的指数移动均值来实现。作者在小批量数据集及CIFAR-10上观察到比Adam更佳的效果。

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后知前觉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值