Dropout-VGG 卷积神经网络在交通标志分类中的应用
1. 图像分类方法概述
在计算机视觉领域,为解决诸如人脸识别、目标识别和图像检测等问题,研究者们提出了多种方法。
1.1 基于特征的方法
为获得更准确的结果,一些特殊特征被应用于计算机视觉问题中,例如:
- 方向梯度直方图(HOG) :模拟动物视觉皮层,能在图像中提取梯度方向特征。
- Gabor 滤波器特征 :可用于捕捉图像的纹理信息。
- 局部二值模式(LBP) :对图像的局部纹理进行描述。
基于这些特征,后续有许多相关的研究方法被提出。例如,有研究在标志图像提取的 HOG 特征上使用线性支持向量机(SVM)分类器;还有研究使用线性 SVM 的二叉树,并在多尺度 LBP 特征上使用 AdaBoost 分类器进行检测;也有研究对不同大小的 HOG 描述符使用随机森林、SVM 和 K - d 树等分类器进行评估;另外,有研究将 Gabor、LBP、HOG 特征融合,通过 SVM 进行预测。
1.2 深度学习方法
深度学习,即深度神经网络(DNN),也被称为多层人工神经网络(ANNs),在近年来成为处理大量数据的有力工具。在模式识别等领域,传统方法难以与具有更深隐藏层的深度学习方法相媲美,因此深度学习被认为是处理图像管理领域问题的最优方法。
在众多深度神经网络中,卷积神经网络(CNN)是最流行的一种。过去十年的研究表明,将 CNN 模型应用于图像分类问题,在大多数情况下都能取得最先进的成果。 <
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



