23、基于Dropout - VGG的卷积神经网络在交通标志分类中的应用

基于Dropout - VGG的卷积神经网络在交通标志分类中的应用

1. 计算机视觉特征与方法

在计算机视觉领域,如人脸识别、目标识别和图像检测等问题中,为了获得更准确的结果,会使用一些特殊的特征。常见的特征包括方向梯度直方图(HOG)、Gabor滤波器特征、局部二值模式(LBP)等。这些特征通过模拟动物的视觉皮层,往往能产生更优的性能。

一些研究基于这些特征提出了不同的方法:
- 有研究提出了基于稀疏表示的图嵌入(SRGE)方法,该方法通过整合分层连接图(HCG)中符号的局部流形结构来理解子空间。
- 有研究在从符号图像中提取的梯度方向特征(即HOG)上使用线性支持向量机(SVM)分类器。
- 还有研究使用线性SVM的二叉树,并在多尺度LBP特征上使用AdaBoost分类器进行检测。
- 也有研究对不同大小的HOG描述符进行了随机森林、SVM和K - d树等分类器的评估。
- 另外有研究将Gabor、LBP、HOG特征融合,通过SVM进行预测。

2. 深度学习在图像分类中的应用

深度学习或深度神经网络在近几十年成为了最具影响力的工具之一,也被广泛应用于处理大量数据。它也被称为多层人工神经网络(ANNs)。近年来,传统方法在不同问题领域,特别是模式识别领域,已无法与更深隐藏层的性能相匹配,因此深度学习被认为是处理图像管理领域的最佳方法。

在所有的深度神经网络中,卷积神经网络(CNN)是最流行的一种。过去十年的研究表明,将CNN模型应用于图像分类问题,在大多数问题中都取得了最先进的成果。

CNN也被称为ConvNet,它是一种独特的多层人工神经元网络,其灵感来源于生物的

Matlab基于粒子群优化算法及鲁棒MPPT控制器提高光伏并网的效率内容概要:本文围绕Matlab在电力系统优化与控制领域的应用展开,重点介绍了基于粒子群优化算法(PSO)和鲁棒MPPT控制器提升光伏并网效率的技术方案。通过Matlab代码实现,结合智能优化算法与先进控制策略,对光伏发电系统的最大功率点跟踪进行优化,有效提高了系统在不同光照条件下的能量转换效率和并网稳定性。同时,文档还涵盖了多种电力系统应用场景,如微电网调度、储能配置、鲁棒控制等,展示了Matlab在科研复现与工程仿真中的强大能力。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的高校研究生、科研人员及从事新能源系统开发的工程师;尤其适合关注光伏并网技术、智能优化算法应用与MPPT控制策略研究的专业人士。; 使用场景及目标:①利用粒子群算法优化光伏系统MPPT控制器参数,提升动态响应速度与稳态精度;②研究鲁棒控制策略在光伏并网系统中的抗干扰能力;③复现已发表的高水平论文(如EI、SCI)中的仿真案例,支撑科研项目与学术写作。; 阅读建议:建议结合文中提供的Matlab代码与Simulink模型进行实践操作,重点关注算法实现细节与系统参数设置,同时参考链接中的完整资源下载以获取更多复现实例,加深对优化算法与控制系统设计的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值