基于Dropout - VGG的卷积神经网络在交通标志分类中的应用
1. 计算机视觉特征与方法
在计算机视觉领域,如人脸识别、目标识别和图像检测等问题中,为了获得更准确的结果,会使用一些特殊的特征。常见的特征包括方向梯度直方图(HOG)、Gabor滤波器特征、局部二值模式(LBP)等。这些特征通过模拟动物的视觉皮层,往往能产生更优的性能。
一些研究基于这些特征提出了不同的方法:
- 有研究提出了基于稀疏表示的图嵌入(SRGE)方法,该方法通过整合分层连接图(HCG)中符号的局部流形结构来理解子空间。
- 有研究在从符号图像中提取的梯度方向特征(即HOG)上使用线性支持向量机(SVM)分类器。
- 还有研究使用线性SVM的二叉树,并在多尺度LBP特征上使用AdaBoost分类器进行检测。
- 也有研究对不同大小的HOG描述符进行了随机森林、SVM和K - d树等分类器的评估。
- 另外有研究将Gabor、LBP、HOG特征融合,通过SVM进行预测。
2. 深度学习在图像分类中的应用
深度学习或深度神经网络在近几十年成为了最具影响力的工具之一,也被广泛应用于处理大量数据。它也被称为多层人工神经网络(ANNs)。近年来,传统方法在不同问题领域,特别是模式识别领域,已无法与更深隐藏层的性能相匹配,因此深度学习被认为是处理图像管理领域的最佳方法。
在所有的深度神经网络中,卷积神经网络(CNN)是最流行的一种。过去十年的研究表明,将CNN模型应用于图像分类问题,在大多数问题中都取得了最先进的成果。
CNN也被称为ConvNet,它是一种独特的多层人工神经元网络,其灵感来源于生物的
超级会员免费看
订阅专栏 解锁全文
1万+

被折叠的 条评论
为什么被折叠?



