OpenCV-图像运算

本文介绍了OpenCV中的图像加法运算,包括使用加号运算符和cv2.add()函数,讨论了像素值超过255时的处理方式。接着讲解了算术运算、图像调整以及图像逻辑操作,如与、或、异或、非运算,并提供了相应的实现方法。此外,还提及了图像加密、面部打码与解码以及数字水印等高级应用。
摘要由CSDN通过智能技术生成

图像加法运算

在图像处理过程中,经常需要对图像进行加法运算。可以通过加号运算符“+”对图像进行加法运算,也可以通过cv2.add()函数对图像进行加法运算
通常情况下,在灰度图像中,像素用8个比特位(一个字节)来表示,像素值的范围是[0,255]。两个像素值在进行加法运算时,求得的和很可能超过255。上述两种不同的加法运算方式,对超过255的数值的处理方式是不一样的。

import cv2 
import numpy as np
import cv2 
img1=cv2.imread("LinuxLogo.jpg")
img2=cv2.imread("WindowsLogo.jpg")
img3=img1+img2
cv2.imshow("add",img3)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

算术运算(加减乘除)

def add_demo(m1, m2):
    dst = cv2.add(m1, m2)
    cv2.imshow("add_demo", dst)
def subtract_demo(m1, m2):
    dst = cv2.subtract(m1, m2)
    cv2.imshow("subtract_demo", dst)
def divide_demo(m1, m2):
    dst = cv2.divide(m1, m2)
    cv2.imshow("divide_demo", dst)
def multiply_demo(m1, m2):
    dst = cv2.multiply(m1, m2)
    cv2.imshow("multiply_demo", dst)

图像调整

def contrast_brightness_demo(image, c, b):
    h, w, ch = image.shape
    blank = np.zeros([h, w, ch], image.dtype)
    dst = cv2.addWeighted(image, c, blank, 1-c, b)
    cv2.imshow("con-bri-demo", dst)

图像逻辑

与、或、异或、非:使用opencv中有四种逻辑运算函数实现操作
与运算cv2.bitwise_and();
或运算cv2.bitwise_or();
异或运算cv2.bitwise_xor();
非运算cv2.bitwise_not();

#按位与 按位或

def logic_demo(m1, m2):
    dst1 = cv2.bitwise_and(m1, m2)
    dst2 = cv2.bitwise_or(m1, m2)
    cv2.imshow("logic_demo_and", dst1)
    cv2.imshow("logic_demo_or",dst2)

#按位非运算 按位异或

def logic_demo2(m1,m2):
    dst1=cv2.bitwise_not(m1,m2)
    dst2=cv2.bitwise_xor(m1,m2)
    cv2.imshow("logic_demo_not", dst1)
    cv2.imshow("logic_demo_xor",dst2)    

#实现

img1=cv2.imread("LinuxLogo.jpg")
img2=cv2.imread("WindowsLogo.jpg")
cv2.imshow("image1", img1)
cv2.imshow("image2", img2)
logic_demo(img1,img2)
#logic_demo2(img2,img1)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

图像加密

import cv2
import numpy as np
 
demo = cv2.imread("shenmi.jpg", 0)
r, c = demo.shape
key = np.random.randint(0, 256, size=(r, c), dtype=np.uint8)   # 生成随机的密钥图像
 
cv2.imshow("shenmi", demo)              # 显示原始图像
cv2.imshow("key", key)                # 显示密钥图像
 
encryption = cv2.bitwise_xor(demo, key)   # 加密
decryption = cv2.bitwise_xor(encryption, key)  # 解密
 
cv2.imshow("jiami", encryption)      # 显示密文图像
cv2.imshow("jiemi", decryption)      # 显示解密后的图像
 
cv2.waitKey(-1)
cv2.destroyAllWindows()

在这里插入图片描述

面部打码及解码

import cv2
import numpy as np
lena=cv2.imread("lena.bmp",0)
r,c=lena.shape
mask=np.zeros((r,c),dtype=np.uint8)
mask[220:400,250:350]=1
key=np.random.randint(0,256,size=[r,c],dtype=np.uint8) # 获取密匙

lenaXorKey=cv2.bitwise_xor(lena,key)  # 对原图像加密
encryptFace=cv2.bitwise_and(lenaXorKey,mask*255) # 获取加密图的脸部信息
noFace1=cv2.bitwise_and(lena,(1-mask)*255)     # 将原图的脸部位置置0
maskFace=encryptFace+noFace1                # 得到打码的原图  

#解码
extractOriginal=cv2.bitwise_xor(maskFace,key)   # 得到脸部的原始信息
extractFace=cv2.bitwise_and(extractOriginal,mask*255)  # 提取脸部信息
noFace2=cv2.bitwise_and(maskFace,(1-mask)*255)  # 从打码的原图内提取没有脸的原图
extractLena=noFace2+extractFace     # 得到解码的原图

#显示图像
cv2.imshow("lena",lena)
cv2.imshow("mask",mask*255)          
cv2.imshow("1-mask",(1-mask)*255)
cv2.imshow("key",key)
cv2.imshow("lenaXorKey",lenaXorKey)
cv2.imshow("encryptFace",encryptFace)
cv2.imshow("noFace1",noFace1)
cv2.imshow("maskFace",maskFace)
cv2.imshow("extractOriginal",extractOriginal)
cv2.imshow("extractFace",extractFace)
cv2.imshow("noFace2",noFace2)
cv2.imshow("extractLena",extractLena)
cv2.waitKey()
cv2.destroyAllWindows()

在这里插入图片描述

数字水印

import cv2
import numpy as np
lena=cv2.imread("lena.bmp",0)
watermark=cv2.imread("watermark.bmp",0)
w=watermark[:,:]>0
watermark[w]=1
r,c=lena.shape
#============嵌入过程============
t254=np.ones((r,c),dtype=np.uint8)*254
lenaH7=cv2.bitwise_and(lena,t254)
e=cv2.bitwise_or(lenaH7,watermark)
#============提取过程============
t1=np.ones((r,c),dtype=np.uint8)
wm=cv2.bitwise_and(e,t1)
print(wm)
w=wm[:,:]>0
wm[w]=255
#============显示============
cv2.imshow("lena",lena)
cv2.imshow("watermark",watermark*255)  
cv2.imshow("e",e)
cv2.imshow("wm",wm)
cv2.waitKey()
cv2.destroyAllWindows()
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值