OpenCV-阈值与平滑处理

本文介绍了OpenCV中的阈值处理,包括基本阈值、自适应阈值和Otsu阈值运算,详细讲解了各种阈值处理的方法。此外,还探讨了平滑处理,如卷积、均值滤波、高斯滤波、中值滤波和双边滤波在图像去噪和保护边缘细节方面的应用。
摘要由CSDN通过智能技术生成

阈值处理

定义:指剔除图像内像素值高于一定值或者低于一定值的像素点
例如,设定阈值为127,然后将图像内所有像素值大于127的像素点的值设为255。将图像内所有像素值小于或等于127的像素点的值设为0。

cv2.threshold()
retval,dst=cv2.threshold(src,thresh,maxval,type)

在这里插入图片描述retval,dst=cv2.threshold(src,thresh,maxval,type)
在这里插入图片描述

retval,dst=cv2.threshold(src,thresh,maxval,type)

在这里插入图片描述

import cv2
import numpy as np
#from matplotlib import pyplot as plt
peppa = cv2.imread('peppa.jpg')
img=cv2.cvtColor(peppa,cv2.COLOR_BGR2GRAY)
cv2.imshow('Peppa',img)
ret,thresh1 = cv2.threshold(img,200,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,200,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,200,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,200,255,cv2.THRESH_TOZERO_INV)
cv2.imshow('BINARY',thresh1)
cv2.imshow('BINARY_INV',thresh2)
#cv2.imshow('TRUNC',thresh3)
#cv2.imshow('TOZERO',thresh4)
#cv2.imshow('TOZERO_INV',thresh5)
peppa_body=cv2.bitwise_and(peppa,peppa,mask=thresh2)
cv2.imshow('peppa_body',peppa_body)
cv2
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值