[图像补全]Image Fine-grained Inpainting论文解析与实现,效果惊人

图像补全是深度学习领域的热门应用。本文解析和实现论文Image Fine-grained Inpainting中的相关方法。论文亮点在于新增了一种多尺度特征融合的结构,并加入多个的损失用于辅助鉴别生成图像,使生成图像在各个尺度的特征与真实图像匹配。作者本身是有代码库的,但是可能因为疫情影响,仅上传了最后的结果。由于论文中的效果非常好,根据自己动手的原则,笔者按照论文实现了一下算法的各个细节,从最后结果来看,效果确实很不错。

[训练1 epoch的结果]

在这里插入图片描述

[训练3 epoch的结果]

补全图
在这里插入图片描述
待补全图

在这里插入图片描述
原图

在这里插入图片描述

【论文地址】

【作者源码地址】

评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值