图像补全是深度学习领域的热门应用。本文解析和实现论文Image Fine-grained Inpainting中的相关方法。论文亮点在于新增了一种多尺度特征融合的结构,并加入多个的损失用于辅助鉴别生成图像,使生成图像在各个尺度的特征与真实图像匹配。作者本身是有代码库的,但是可能因为疫情影响,仅上传了最后的结果。由于论文中的效果非常好,根据自己动手的原则,笔者按照论文实现了一下算法的各个细节,从最后结果来看,效果确实很不错。
[训练1 epoch的结果]

[训练3 epoch的结果]
补全图

待补全图

原图
