#查看最近10个容器
sudo docker ps -n 10
#查看镜像
sudo docker images
#进入
sudo docker exec -it 12a1(CONTAINER ID) /bin/bash
#退出
exit
#构建容器
sudo docker commit 12a17b slam-hao
#删除images
docker rmi Images_ID
#删除CONTAINER
docker rm CONTAINER_ID
#保存image镜像并命名tag
docker commit -a "hao" -m "images_v2.0" 7f69 images:2.0
#将docker image 存成压缩文件 保存
sudo docker save d8e1272a0569 | gzip > ubuntu16.04-hao-slam.tar.gz
#上传本地文件到docker
docker cp /Users/hao/Desktop/run_cam.sh 12a17b0f(CONTAINER ID):/SLAM_CAM
#下载docker文件到本地
docker cp 12a17b0f(CONTAINER ID):/soo /Users/hao/Desktop/
#历史指令查询
History | grep "commit"
#加载镜像
sudo docker load -i ubuntu16.04-hao-slam.tar.gz
#建立本地容器挂载 进入镜像
sudo docker run -it -v ~/work:/work --name slam0527 d8e1272a0569 /bin/bash
#创建docker的容器。端口可以任意设,64G为容器大小 集群上的地址:容器的地址
sudo nvidia-docker run -it -p 8001:22 --shm-size 64G --name hao_location -u root --privileged=true -v ~/hao/work:/home/hao/work liz:cuda9.0-cudnn7 /bin/bash
#重启
Sudo docker stop CONTAINER ID
sudo docker start CONTAINER ID
#docker 清除安装包
apt-get autoclean
apt-get clean
#GPU查看
nvidia-smi
#查看docker占用空间
docker system df
#Dockerfile
1.编写Dockerfiles
2.docker build -t hao_images:0.1 . #仓库REPOSITORY:标签TAG
3.docker run -it -p 8090:80 --name=test1 hao_images:0.1