1、However, conventional hallucination methods are often designed for controlled settings and cannot handle varying conditions of pose, resolution degree, and blur.
传统的方法有约束控制,不能处理多种姿态、像素深度及遮挡的情况。
2、Our method is based on a novel network architecture called Bi-channel Convolutional Neural Network (Bi-channel CNN).
本文提出的方法基于一种叫做Bi-channel CNN的新颖的网络系统结构。
3、It extracts robust face representations from raw input by using deep convolutional network, then adaptively integrates two channels of information (the raw input image and face representations) to predict the high-resolution image.
简单说,就是从原始输入抽取鲁棒的人脸表征,接着将原始输入与人脸表征这两个信息整合从而预测高分辨率图像。
4、Our model consists of two modules: a feature extractor, and an image generator.
本文提出的模型包括两个模块:特征提取模块和图像生成模块。
5、The deep convolutional extractor learns from raw LR images and extracts descriptive face representations. The image generator takes two channels of information as inputs: the representations extracted by feature extractor and raw LR image.
特征抽取模块:利用深度卷积网络从低分辨率图像学习并抽取人脸表征。
图像产生模块:将抽取的人脸表征与原始的低分辨率图像结合产生高分辨率图像。
6、In this paper, we exploit a simple strategy to combine two channels of information by linear combination.
5中的两个信息利用线性组合方式合并。
7、the process of getting the LR image from HR image can be modeled as:
Here G is the blur kernel, ⊗ denotes the convolution operation and ↓ means down sampling.
这里给出的是如何对一个高分辨图片(正常图片)进行降采样生成一个低分辨率图片。
8、For a given LR image I L , the face hallucination system f is expected to predict a hallucinated face as similar as the ground truth I H by minimizing: