Learning Face Hallucination in the Wild--阅读笔记

本文介绍了一种新型的双通道卷积神经网络(Bi-channel CNN)用于解决人脸图像在不同条件下的超分辨率问题。该方法能够处理姿态变化、分辨率差异和模糊等问题。网络由特征提取器和图像生成器组成,通过线性组合原始输入图像和人脸表征信息来预测高分辨率图像。实验中,使用了超过100,000张人脸图像,包含高斯模糊和运动模糊的随机应用,以训练和验证模型。" 105310283,9355890,蓝桥杯第七届国赛:单片机电压频率测量与实时钟设备设计,"['单片机', '硬件设计', '嵌入式开发', '电路设计', '传感器']
摘要由CSDN通过智能技术生成

1、However, conventional hallucination methods are often designed for controlled settings and cannot handle varying conditions of pose, resolution degree, and blur.

传统的方法有约束控制,不能处理多种姿态、像素深度及遮挡的情况。

2、Our method is based on a novel network architecture called Bi-channel Convolutional Neural Network (Bi-channel CNN). 

本文提出的方法基于一种叫做Bi-channel CNN的新颖的网络系统结构。

3、It extracts robust face representations from raw input by using deep convolutional network, then adaptively integrates two channels of information (the raw input image and face representations) to predict the high-resolution image.

简单说,就是从原始输入抽取鲁棒的人脸表征,接着将原始输入与人脸表征这两个信息整合从而预测高分辨率图像。

4、Our model consists of two modules: a feature extractor, and an image generator.

本文提出的模型包括两个模块:特征提取模块和图像生成模块。

5、The deep convolutional extractor learns from raw LR images and extracts descriptive face representations. The image generator takes two channels of information as inputs: the representations extracted by feature extractor and raw LR image.

特征抽取模块:利用深度卷积网络从低分辨率图像学习并抽取人脸表征。

图像产生模块:将抽取的人脸表征与原始的低分辨率图像结合产生高分辨率图像。

6、In this paper, we exploit a simple strategy to combine two channels of information by linear combination.

5中的两个信息利用线性组合方式合并。

7、the process of getting the LR image from HR image can be modeled as:


Here G is the blur kernel, ⊗ denotes the convolution operation and ↓ means down sampling.

这里给出的是如何对一个高分辨图片(正常图片)进行降采样生成一个低分辨率图片。

8、For a given LR image I L , the face hallucination system f is expected to predict a hallucinated face as similar as the ground truth I H by minimizing:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值