正余弦旋转变压器简介
根据GB/T 10405-2001的规定,旋转变压器的型号由机座号、产品名称代号、参数代号和派生代号4部分组成。
正余弦旋转变压器产品名称代号为XZ,具体型号组成如下:
图1:正余弦旋转变压器具体型号组成示意图
02正余弦旋转变压器性能参数代号
正余弦变压器的性能参数代号由开路输入阻抗和变压比两部分组成,开路输入阻抗(标称值),用欧姆数的百分之一表示;若欧姆数的百分之一不为整数,则取近似的整数,值小于10时,前面冠以0。变压比,其值代号见下表。
代号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
变压比 | 0.15 | 0.45 | 0.56 | 0.65 | 0.78 | 1 | 2 |
旋转变压器是一种测量用途的电机,常被当做角度或速度传感器使用。正余弦旋转变压器其一、二次侧绕组分别放在定、转子上,一次侧绕组与二次侧绕组之间的电磁耦合程度与转子的转角密切相关。正余弦旋转变压器正是利用它们之间的不同相对位置来改变它们之间的互感,以便在二次(转子)绕组中获得与旋转θ成正、余弦函数关系的端电压。
图2:正余弦旋转变压器电气原理图
如上图2所示,S1-S3作为励磁绕组,S2-S4作为定子交轴绕组,两者空间互相垂直且匝数、型式完全相同。R1-R3和R2-R4分别为转子上的正弦输出绕组和余弦输出绕组,它们的结构也完全相同。
对于定子励磁,不带补偿绕组的正余弦旋转变压器在任意电气角度下输出电压满足下述方程式:
UR1R3=KUS1S3cosθ+KUS2S4sinθ
UR2R4=KUS2S4cosθ-KUS1S3sinθ
式中:
UR1R3为转子绕组R1R3之间的电压;
UR2R4为转子绕组R2R4之间的电压;
US1S3为定子绕组S1S3之间的电压;
US2S4为定子绕组S2S4之间的电压;
θ为旋转变压器转子相对定子的电气角;
K为旋转变压器变比。
当原边定子交轴绕组短路时,电压方程式变为:
UR1R3=KUS1S3cosθ
UR2R4=-KUS1S3sinθ
对正余弦旋转变压器的励磁绕组、正弦绕组和余弦绕组的输出信号进行测量和分析,可以计算出旋转变压器的电气角和旋转速度,从而得到被测对象角度、转速等参数。
对于定子励磁来讲,当图2中S1S3与R2R4处于最小耦合时即旋变的基准电气零位。当正余弦旋转变压器的输出绕组中感应电压最小时,转子位置就是电气零位,输出电压就是零位电压。零位电压也称剩余电压(Null voltage)。
正余弦旋转变压器在任一转子位置时函数误差的表达式为:
旋转变压器函数误差计算公式式中:
δs——函数误差;
Uθ——在转子角度为θ时输出电压基波同相(与最大输出电压同相)分量;
U——在转子角度为90°时输出电压基波分量。
相位移是指励磁电压与输出电压的基波分量之间的相位差。正余弦旋转变压器相位移通常超前,对于控制系统而言,相对固定的相位移是可以接受的,但是,较大的、并且不稳定的相位移则是不允许的。
一般而言,随着基座号的上升、励磁频率的上升,相位移随之减小。随着温度的上升,绕组电阻变大,相位移也会变大。
正余弦旋转变压器的变压比与静止变压器的变比含义相同,但是,正余弦旋转变压器在不同转角时,磁场耦合程度不同,输出电压不同。因此,正余弦旋转变压器的变压比是指在规定励磁条件下,最大空载输出电压的基波分量与励磁电压的基波分量之比。
电气误差是指转子实际电气角度与通过输出测量计算获得的电气角度的偏差。一般不超过12′。
原边绕组轮流励磁(剩下绕组短路),转动转子,分别测得转子理论角度为0°、90°、180°、270°时的电气误差,按要求取这些电气误差的代数差,绝对值最大的差值为交轴误差。
旋转变压器的技术指标中,在铭牌上标称的指标一般只有两个,一个是变压比,另一个就是开路输入阻抗。旋转变压器的开路输入阻抗一般在200Ω~10kΩ之间。
旋转变压器励磁绕组的空载电流符合产品专用技术条件中的规定。
许多人认为,正余弦旋转变压器一个绕组输出正弦信号,一个绕组输出余弦信号,两者相差90°,这其实是一种错误的认识。正余弦旋转变压器相当于一台调幅装置,励磁信号相当于载波信号,通常为400Hz、1000Hz或更高频率的正弦波。与转子旋转速度关联的正余弦信号相当于调制信号,旋转变压器静止时,正余弦绕组输出的是载波信号,旋转时,输出的是已调制的调幅信号。
当旋转变压器为两极,励磁频率为1000Hz,转子以3000r/min旋转,正余弦绕组输出为50Hz正弦调制波到1000Hz正弦载波上的调幅信号。如图3所示:
图3:正余弦旋转变压器的励磁波形及正余弦绕组输出波形
正弦绕组和余弦绕组输出为调幅波,其包络线分别为正弦波和余弦波,包络线的频率为50Hz,对应转子的转速,正弦绕组和余弦绕组的幅值的比值的反正切就是转子的转角。
正余弦旋转变压器输出为调幅波,包含了转角及转速信号,银河电气在充分研究正余弦变压器输入输出关系的基础上,研制了DH2000/RE1正余弦旋转变压器综合测试仪。测试仪如下图4所示。
图4:正余弦旋转变压器综合测试仪
● 全新测试手段,告别纷繁复杂的传统仪器;
● 现代测试技术,全面提高测试精度;
● 全面解码旋变,状态及性能参数一目了然;
一台DH2000/RE1正余弦旋转变压器综合测试仪即可高效率实现标准规定的所有试验,并可自动出具试验报告和合格判定。(测试仪内置高精度励磁电源,用户无需另外选购)
正余弦旋转变压器综合试验系统
正余弦旋转变压器输出的是正余弦信号吗?
许多人认为,正余弦旋转变压器一个绕组输出正弦信号,一个绕组输出余弦信号,两者相位差90°。如图1所示:
图1. 正余弦旋转变压器正余弦绕组输出错误描述
这是一个完全错误的概念!
转子静止时,正余弦旋转变压器的正弦绕组和余弦绕组输出为与励磁绕组同频率的正弦波,两者相位差是0°或180°。
在转子转度为90°,270°时,余弦绕组输出幅值为零,没有相位差的概念。
在转子转度为0°,180°时,正弦绕组输出幅值为零,没有相位差的概念。
除了这四个特殊转角之外,转角在第一象限,正余弦绕组输出相位同相(或反相);转角在第二象限,正余弦绕组输出相位反相(或同相);转角在第三象限,正余弦绕组输出相位同相(或反相);转角在第四象限,正余弦绕组输出相位反相(或同相)。
也就是说,任意时刻,正余弦绕组的相位差都不是90°!
上述观点,可以由旋转变压器的输出电压方程式推算。
《GB/T 10241-2007旋转变压器通用技术条件》中指出:
定子励磁,不带补偿绕组的正余弦旋转变压器在任意电气角度下输出电压满足下述方程式:
UR1R3=KUS1S3cosθ+ KUS2S4sinθ
UR2R4=KUS2S4cosθ- KUS1S3sinθ
式中:
UR1R3为转子绕组R1R3之间的电压;
UR2R4为转子绕组R2R4之间的电压;
US1S3为定子绕组S1S3之间的电压;
US2S4为定子绕组S2S4之间的电压;
θ为旋转变压器转子相对定子的电气角;
K为旋转变压器变比。
当原边定子交轴绕组短路时,电压方程式变为:
UR1R3=KUS1S3cosθ
UR2R4= - KUS1S3sinθ
类似的,对于转子励磁的正余弦旋转变压器,当转子正交绕组R2R4短路时,电压方程式如下:
US1S3=KUR1R3cosθ (1)
US2S4=KUR1R3sinθ (2)
以转子励磁的正余弦旋转变压器为例,
θ=0°时,US1S3=KUR1R3,US2S4= 0
θ=45°时,US1S3=0.707KUR1R3,US2S4=0.707 KUR1R3 (同相)
θ=90°时,US1S3=0,US2S4= KUR1R3
θ=135°时,US1S3=-0.707KUS1S3,UR2R4=0.707 KUS1S3 (反相)
θ=180°时,US1S3=-KUR1R3,US2S4= 0
θ=225°时,US1S3=-0.707KUR1R3,US2S4=-0.707 KUR1R3 (同相)
θ=270°时,US1S3=0,US2S4= -KUR1R3
θ=315°时,US1S3=0.707KUR1R3,US2S4=-0.707 KUR1R3 (反相)
显然,不论电气角θ如何变化,旋转变压器的正余弦绕组的相位差只会在同相和反相之间变化。其变化规律如图2所示:
图2. 旋转变压器正余弦绕组输出电压相位关系
那么,为何有正余弦绕组输出相位差90°的描述呢?
以上分析了转子静止时各个电气角下正余弦旋转变压器正余弦绕组的相位关系。
依据正余弦旋转变压器电压方程式(1)、(2)可知,在不同电气角θ下,正余弦绕组输出波形的幅值是不一样的,假设转子匀速旋转,正余弦绕组输出波形及励磁绕组的输入波形如图3所示:
图3. 正余弦旋转变压器正余弦绕组及励磁绕组波形图
由图3可知,实际上,正余弦绕组输出的不是正弦波或余弦波,而是一个调幅波,该调幅波以同频同相的励磁电压作为载波信号,以一个低频正弦波(图3中正弦绕组波形包络线)及余弦波(图3中余弦绕组波形包络线)作为调制信号。
对比图1可知,图1所示的正余弦绕组波形,实际上是旋转变压器正余弦绕组输出波形的包络线,并非真实的输出波形!
那么,我们是如何得到这样的包络线呢?
如图3所示,假设AD转换器仅仅在励磁电压的正向峰值时刻对正余弦绕组输出波形进行采样,就可以得到浅色线所示的包络线。由于每个励磁周期仅采样一次,采样频率低于被采样信号的频率,称为欠采样技术。欠采样技术不能还原真实波形,但在此处恰好可以获取我们关心的包络线(调制信号),实现旋转变压器输出的解调!
由于欠采样技术在正余弦旋转变压器输出解码中广泛应用,许多同学误将欠采样条件下获得的包络线作为正余弦绕组的输出波形。
只有真正了解正余弦旋转变压器输出波形的特点,才能对其输出进行灵活的、准确的解码。特别是计算机技术高速发展的今天,只要我们知道信号的构成特点,采用数字处理技术对其进行准确的运算、分析并不难。