线性旋转变压器最佳变比求解

复习自动控制元件时,对线性旋转变压器的最佳变比产生了兴趣,查阅了一定的资料,也只是提到“当变压比K=0.52时,在\pm 60^\circ的范围内,特性曲线与理想直线的误差最小,一般取K为0.56~0.57”,至于这个结果是怎么推导出来的,没有过多的介绍,这里,我利用一个较为简明的方法推导这个最佳变比。

线性旋转变压器接线方法如上图所示,得到的输出电压与输入电压(励磁电压)的关系式为:

U_o=\frac{K\sin\theta}{1+K\cos\theta}U_f

由于电源是理想电压源,输入电压U_f近似等于电源电动势,可以认为是一个恒定的值,则前面的系数应该是一个与角度值近似满足线性关系的比例式,即:

 \frac{K\sin\theta}{1+K\cos\theta}\approx k\theta,-60^\circ\leq \theta\leq60^\circ

 将上式作适当变形,并利用泰勒公式展开得:

K\sin\theta\approx k\theta+kK\theta\cos\theta

K\theta-K\frac{\theta^3}{6}+K\frac{\theta^5}{120}=k(K+1)\theta-kK\frac{\theta^2}{2}\cdot\theta+kK\frac{\theta^4}{24}\cdot\theta(*)

上式对-60^\circ\leq\theta\leq60^\circ内的\theta均成立,因此应当使高次项正负项对消,同时保留一次项相等,即有:

K\theta=k(K+1)\theta(1)

-(\frac{kK}{2}-\frac{K}{6})\theta^3+(\frac{kK}{24}-\frac{K}{120})\theta^5=0(2)

化简(2)式,得到结果:

(60-5\theta^2)k-(20-\theta^2)=0\Rightarrow k=\frac{20-\theta^2}{60-5\theta^2}(3)

这里的\theta应用弧度值单位,则当其最大的时候,即取到\pm 60^\circ=\pm\frac{\pi}{3} rad=\pm 1.05 rad的时候,此时:

k=\frac{20-(\frac{\pi}{3})^2}{60-5(\frac{\pi}{3})^2}=0.347

而当\theta应用弧度值单位,当其最小的时候,即取到0的时候,有:

k=\frac{20}{60}=0.333

可见输出比例系数k的变化范围很小,以两个端点值的均值0.34作为输出比例系数,反解变比得:

K=\frac{k}{1-k}=\frac{0.34}{0.66}=0.515\approx0.52

这就求得了最佳变比,如果要进一步求更精确的值,可将(*)式多展开几项,求解高次方程,得到的结果与这个形式相差很小,如果要求解最佳变比K的范围,就根据两个端点值,分别代入(3)式中可以得到范围的结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值