旋转变压器解码软件算法研究MATLAB实现

文章介绍了旋转变压器的工作原理,特别是MATLAB中如何进行软件解码,包括使用锁相环和PI控制器来提取角度和速度信息。针对10kHz激励信号,讨论了角速度震荡问题及参数优化需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

旋转变压器软件解码可能指的是将当前的旋转变压器的数据进行解码,以便在计算机中进行处理和分析。具体来说,需要进行以下步骤:

  1. 获取旋转变压器的原始数据。这可以通过传感器或其他数据采集设备来实现。

  2. 将原始数据输入计算机,利用特定的软件对数据进行解码。这需要使用与旋转变压器相对应的解码算法。

  3. 对解码后的数据进行分析和处理。这可以包括对变压器的运行状态进行监测,检测变压器是否存在故障或异常。

  4. 根据需要,生成报告或输出其他形式的数据。这可以帮助维护人员及时发现问题并进行处理。

需要注意的是,不同类型的旋转变压器可能需要不同的解码算法和软件,因此需要根据具体情况进行选择。

本文实现MATLAB纯软件实现解码,包括信号旋变模拟发出到,旋变信号解码.

旋变格式信号

旋变器是一种旋转变压器,通常配置是初级绕组位于转子
上,两个次级绕组则位于定子上。不过,可变磁阻旋变器
的转子上不存在绕组,如图24所示。初级绕组和次级绕组
均位于定子上,但转子的特殊设计使得次级耦合随着角位
置变化而发生正弦变化。无论何种配置,旋变输出电压(S3
− S1, S2 − S4)的计算公式均相同,如公式1所示。

两个定子绕组机械错位90°(参见图24)。初级绕组采用交流
基准源激励。随后在定子次级绕组上的耦合的幅度是转子
(轴)相对于定子的位置的函数。因此,旋变产生由轴角的
正弦和余弦调制的两个输出电压(S3 − S1, S2 − S4)。旋变格
式信号是指从旋变输出获得的信号,如公式1所示。图25
为输出格式的示意图。

下图为MATLAB仿真信号源

 激励信号10Khz.

        分解器到数字转换器块为将旋转轴的角位置或速度转换为电信号的转换器建模。分解器到数字转换器通常用于恶劣、崎岖的环境,例如全电动汽车。

转换后的信号与轴角度的正弦或余弦成比例。

        旋转变压器传感器有一个转子绕组,励磁机正弦波交流耦合到两个定子绕组。定子绕组,一个正弦线圈和一个余弦线圈,机械定位成90度异相。当转子旋转时,转子位置角相对于定子绕组发生变化。然后必须获得、解调和后处理得到的幅度调制信号,以提取角度和速度信息([1]和[2])。

方程式

该块使用锁相环(PLL)来提取旋转轴的角度和速度。PI控制器使用的误差电压如下所示:

Vp是激励电压。

Vx是旋转变压器次级绕组的x电压。

Vy是旋转变压器次级绕组的y电压。

N是旋转变压器的极对数。

θ是角度。

获得的速度为:

 使用以下公式根据速度计算角度:

 

可调节参数如下

Sample time (-1 for inherited) — Block sample time

采样时间(-1表示继承)-块采样时间

Phase-looked loop proportional gain — PLL proportional gain

锁相环比例增益

Phase-looked loop integral gain — PLL integral gain

锁相环积分增益-PLL积分增益

Number of pole pairs — Pole pairs in the attached machine

极对数-所附机器中的极对数

         Np为4,信号源100hz,角度信号频率100/4=25(HZ);角速度为100/4*2*pi=157 rad/s;

锁相参数待优化,角速度有震荡. 

### 关于旋转变压器软件解码实现 #### 1. 背景介绍 旋转变压器是一种用于检测电机转子位置和速度的传感器设备。它通过输出正弦波和余弦波信号表示角度信息[^5]。为了获取精确的角度值,通常需要对接收到的正弦波和余弦波进行数字化处理并计算反正切值。 #### 2. 数字化过程 在实际应用中,可以通过模数转换器 (ADC) 将模拟形式的正弦波和余弦波转化为离散数值。随后利用微控制器或 DSP 进行进一步运算以获得角度值。具体步骤如下: - **采集信号**: 使用 ADC 对正弦波 \( S \sin(\theta) \) 和余弦波 \( C \cos(\theta) \) 的电压值进行采样。 - **比例调整**: 如果输入信号幅值范围较大,则需对其进行缩放以便适应后续算法需求。 - **计算反正切**: 利用反正切函数 (\( atan2(y, x) \)) 计算当前角位移 θ 值。 以下是基于 Python 编写的简单仿真代码示例: ```python import numpy as np def calculate_angle(sine_signal, cosine_signal): """ Calculate the angle from sine and cosine signals. Parameters: sine_signal (float): The value of the sine signal at a given time point. cosine_signal (float): The value of the cosine signal at a same time point. Returns: float: Calculated angular position in radians. """ # Ensure inputs are not both zero to avoid undefined behavior if sine_signal == 0 and cosine_signal == 0: raise ValueError("Both sine and cosine cannot be zero simultaneously.") # Compute the phase using arctan2 function which handles all quadrants correctly theta = np.arctan2(sine_signal, cosine_signal) return theta # Example usage with simulated data points representing sin(theta), cos(theta) sine_sample = 0.707 # Simulated sample corresponding to sqrt(2)/2 ~ sin(pi/4) cosine_sample = 0.707 # Similarly for cos(pi/4) angle_radians = calculate_angle(sine_sample, cosine_sample) print(f"The calculated angle is {np.degrees(angle_radians)} degrees.") # Convert result into degree units ``` 上述程序片段展示了如何依据给定时刻下的正弦分量与余弦分量来估算对应机械轴的位置角度。注意这里假设理想条件即无噪声干扰的理想环境;而在真实世界里还需考虑诸如滤波去噪等因素的影响。 #### 3. AUTOSAR 中的相关配置 如果是在 AUTOSAR 架构下开发此类功能,则涉及到多个层面的设计决策。例如软解码模块的选择、数据存储策略及时钟同步机制等方面均需仔细规划[^2]。此外,在硬件选型阶段也应充分考量目标平台特性——像 PGA411 这样的高性能器件能够提供必要的支持从而简化整体设计复杂度[^3]。 #### 4. 符号信号的作用 值得注意的是某些场景还可能涉及额外辅助信息如符号标志用来指示特定状态变化情况。比如载波周期内的极性切换可通过设置相应标记变量反映出来(+1 或 -1),这对于区分不同象限至关重要[^4]。 --- ###
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

happy_baymax

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值