[深度学习] 车道线检测调研(lane detection)

原文:https://blog.csdn.net/soulmeetliang/article/details/89398412

背景

车道线检测作为自动驾驶领域的常规工作,在深度学习的浪潮中又有了很大的进步,在此分享我所做的调研工作,部分为ppt截图,为了方便请谅解。

车道线检测工作的局限性

Limits如上图所示,车道线检测工作的baseline并不明确,不同的方法与不同的场景应用都有各自的局限性。例如:

  • 输出类型:mask掩码/点集/矢量线条
  • 实例化:每个车道线是否形成实例
  • 分类:是否对车道线进行了分类(单白、双黄等)
  • 提前定义的参数:是否只能检测固定数量的车道线
  • 车道标记:是否对车道上的行车标记也做了检测

性能指标

在这里插入图片描述如上图所示,在评判ture or false时,主要有两种方式:

  • end point,通过判断线的端点间的距离及其包围面积是否超过阈值
  • IOU,直接计算IOU的重叠面积

工作pipeline

在这里插入图片描述
如上图所示,目前的主流方法pipeline分为多阶段与单阶段。

  • 多阶段可以分为两个部分,二值语义分割产生掩码图和对掩码图进行线的拟合。其中,二值语义分割主要采用CNN方法,并通过SCNN(Spatial As Deep: Spatial CNN for Traffic Scene Understanding)、CNN+RNN(Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks
    )、GAN(EL-GAN:Embedding Loss Driven Generateive Adversarial Networks for Lane Detection)等方法来提高语义分割精度。
    而对掩码图的线的拟合,有采用学习到的转换矩阵先将分割结果转换为鸟瞰图视角,然后,采用均匀取点+最小二乘法拟合,拟合方程可选三次方程。
  • 对于单阶段方法,即是直接回归出线的参数,即在CNN上修改分支,使用特殊层将参数输出。

数据集

数据集

传统方法

传统方法

近三年的部分工作(基于深度学习)

在这里插入图片描述

引用github项目 awesome-lane-detection

Paper

2019

《Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks》

《End-to-end Lane Detection through Differentiable Least-Squares Fitting》 github

2018

《End to End Video Segmentation for Driving : Lane Detection For Autonomous Car》

《3D-LaneNet: end-to-end 3D multiple lane detection》

《Efficient Road Lane Marking Detection with Deep Learning》 DSP 2018

《Multiple Lane Detection Algorithm Based on Optimised Dense Disparity Map Estimation》 IST 2018

《LineNet: a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environments》

《Real-time stereo vision-based lane detection system》

《LaneNet: Real-Time Lane Detection Networks for Autonomous Driving》

《EL-GAN: Embedding Loss Driven Generative Adversarial Networks for Lane Detection》

《Real-time Lane Marker Detection Using Template Matching with RGB-D Camera》

《Towards End-to-End Lane Detection: an Instance Segmentation Approach》 论文解读 github

《Lane Detection and Classification for Forward Collision Warning System Based on Stereo Vision》

《Advances in Vision-Based Lane Detection: Algorithms, Integration, Assessment, and Perspectives on ACP-Based Parallel Vision》

《(SCNN)Spatial As Deep: Spatial CNN for Traffic Scene Understanding》 AAAI 2018 CSDN Translator

《Lane Detection Based on Inverse Perspective Transformation and Kalman Filter》

2017

《A review of recent advances in lane detection and departure warning system》

《Deep Learning Lane Marker Segmentation From Automatically Generated Labels》 Youtube

VPGNet: Vanishing Point Guided Network for Lane and Road Marking Detection and Recognition ICCV 2017 github

Code

https://github.com/wvangansbeke/LaneDetection_End2End

https://github.com/georgesung/advanced_lane_detection

https://github.com/MaybeShewill-CV/lanenet-lane-detection

https://github.com/XingangPan/SCNN

https://github.com/davidawad/Lane-Detection

https://github.com/yang1688899/CarND-Advanced-Lane-Lines

https://github.com/SeokjuLee/VPGNet

https://github.com/mvirgo/MLND-Capstone:Lane Detection with Deep Learning

https://github.com/galenballew/SDC-Lane-and-Vehicle-Detection-Tracking

https://github.com/shawshany/Advance_LaneFinding

Blog

Lane Detection with Deep Learning (Part 1)

Simple Lane Detection with OpenCV

Building a lane detection system using Python 3 and OpenCV

Datasets

tusimple.ai

A Dataset for Lane Instance Segmentation in Urban Environments

论文介绍

后面会各开一篇详细介绍

Spatial As Deep: Spatial CNN for Traffic Scene Understanding

Abstract

在这里插入图片描述

Towards End-to-End Lane Detection: an Instance Segmentation Approach

Abstract

在这里插入图片描述

LineNet: a Zoomable CNN for Crowdsourced High Definition Maps Modeling in Urban Environments

Abstract

在这里插入图片描述

Robust Lane Detection from Continuous Driving Scenes Using Deep Neural Networks

Abstract

在这里插入图片描述

        </div>
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值