直方图均衡化原理

直方图均衡化算法分为三个步骤,第一步是统计直方图每个灰度级出现的次数,第二步是累计归一化的直方图,第三步是计算新的像素值。

第一步:

    for(i=0;i<height;i++){
       for(j=0;j<width;j++){
          n[s[i][j]]++;
       }
    }

    for(i=0;i<L;i++){

        p[i]=n[i]/(width*height);

    }

    这里,n[i]表示的是灰度级为i的像素的个数,L表示的是最大灰度级,width和height分别表示的是原始图像的宽度和高度,所以,p[i]表示的就是灰度级为i的像素在整幅图像中出现的概率(其实就是p[]这个数组存储的就是这幅图像的归一化之后的直方图)。

第二步:

    for(i=0;i<=L;i++){
       for(j=0;j<=i;j++){
          c[i]+=p[j];
       }
    }

    c[]这个数组存储的就是累计的归一化直方图。

第三步:

    max=min=s[0][0];
    for(i=0;i<height;i++){
       for(j=0;j<width;j++){
           if(max<s[i][j]){

               max=s[i][j];

           }else if(min>s[i][j]){

               min=s[i][j];

           }
       }
    }

    找出像素的最大值和最小值。

    for(i=0;i<height;i++){
       for(j=0;j<width;j++){
          t[i][j]=c[s[i][j]]*(max-min)+min;
      }
    }

    t[][]就是最终直方图均衡化之后的结果。

    处理前的图片:

   直方图均衡化之前

    处理后的图片:

   处理后的图片

   对于彩色的图片来说,直方图均衡化一般不能直接对R、G、B三个分量分别进行上述的操作,而要将RGB转换成HSV来对V分量进行直方图均衡化的操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值