__int128 与unsigned __int128使用模板

快读,快写支持任意类型.

#include<bits/stdc++.h>
using namespace  std;
const int N=2e5+10;
#define Temp template<typename T>
typedef long long ll;

Temp inline void read(T &x){
    x=0;T w=1,ch=getchar();
    while(!isdigit(ch)&&ch!='-')ch=getchar();
    if(ch=='-')w=-1,ch=getchar();
    while(isdigit(ch))x=(x<<3)+(x<<1)+(ch^'0'),ch=getchar();
    x=x*w;
}

Temp inline void print(T x)
{
	if (!x) return ;
	if (x < 0) putchar('-'),x = -x;
	print(x / 10);
	putchar(x % 10 + '0');
}

int main()
{
    unsigned __int128 a,b;
    read(a);read(b);
    print(a+b);
    return 0; 
}
<think>好的,我现在要回答用户关于C++中uniform_int_distribution的问题。首先,我需要确认自己对这个类的理解是否正确。 uniform_int_distribution是C++11引入的随机数库中的一个类,用于生成均匀分布的整数。用户可能是在学习随机数生成时遇到这个类的。我需要解释它的作用、用法以及相关的上下文。 首先,我应该说明这个类的基本用途,即生成指定范围内的整数,每个数的概率相等。然后,可能需要提到它如何其他组件配合使用,比如随机数引擎(如default_random_engine)和种子生成器(如random_device)。 接下来,我应该给出一个具体的代码示例,展示如何正确使用这个类。需要注意步骤:初始化随机设备、引擎,然后创建分布对象,并调用它来生成随机数。确保代码示例包含必要的头文件,比如<random>,并且步骤清晰。 然后,解释代码的各个部分,特别是分布对象的参数,比如范围是闭区间,包含两端的值。可能还需要提到,如果不指定范围,默认是0到生成器支持的最大值,但通常应该指定一个明确的区间。 用户可能会混淆均匀分布和其他分布(如均匀实数分布uniform_real_distribution),所以可能需要简要对比,但根据问题,重点应在整数版本。 此外,可能需要说明为什么使用这样的类而不是旧的rand()和%操作,因为后者可能引入偏差,而uniform_int_distribution更准确和可靠。 最后,确保回答结构符合用户的要求:先回答问题,再给出解释,然后提供代码,最后是相关问题。相关问题需要主题相关,比如其他分布类型、引擎的作用、种子设置的重要性,以及旧方法的对比。</think><< `std::uniform_int_distribution` 是C++标准库中定义的一个随机数分布类,用于生成指定范围内均匀分布的**整型**随机数。它会以相等概率生成闭区间 `[a, b]` 内的所有整数。 ### 关键特性: 1. **均匀分布**:每个整数出现的概率相同 2. **闭区间包含**:包含最小值`a`和最大值`b` 3. **模板类**:支持所有整数类型(int, long, unsigned 等) ### 典型用法示例: ```cpp #include <iostream> #include <random> int main() { // 1. 创建随机数引擎(使用硬件熵源初始化) std::random_device rd; std::mt19937 gen(rd()); // 2. 定义分布范围 [1,6](模拟骰子) std::uniform_int_distribution<> dis(1, 6); // 3. 生成10个随机数 for(int n=0; n<10; ++n) std::cout << dis(gen) << ' '; return 0; } // 可能的输出:3 1 6 2 5 4 2 6 1 3 ``` ### 注意事项: - 必须配合随机数引擎使用(如`mt19937`) - 范围参数默认是`[0, std::numeric_limits<IntType>::max()]` - 比传统的`rand() % N`更准确(避免模运算偏差) ### 为什么需要它: 旧的C风格随机数生成方法(如`rand() % 6 + 1`)存在分布不均匀的问题,特别是当所需范围不是2的幂时。`uniform_int_distribution`通过精心设计的算法确保真正的均匀分布。 >>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值