0x00. 关于Java算法的学习方法和思路

1.1 前言

  • 在今天这篇文章开始之前,先声明下这篇博文部分内容节选自《labuladong的算法小抄》
  • labuladong 是leetcode 社区一个比较活跃和牛逼的算法大佬
  • labuladong在他的博客中高屋建瓴地剖析了他的算法学习思路,感觉很不错,特此分享给大家。
  • 还记得上学那时候,有的人轻轻松松考高分,有的人非常拼命学还是没有些人考的好,这个问题其实根源在于学习方法或叫学习思路上。
  • 所以说在学习算法之前,多学习下算法的学习方法还是很重要的。

1.2 如何学好算法?

还记得大学期间学习算法相关的数据结构这一科目时,印象最深的就是一句话就是:程序= 数据结构+算法。

所以学好Java各种数据结构的基本用法是根基,算法思路是灵魂

学习算法的途径一般有两种:

  • 学校:为了学分,学习 数据结构和算法(学校注重教授的是基础的数据结构知识以及常用的一些算法)

  • 社会:为了应对面试, leetcode或牛客网刷题训练(面试注重的是用数据结构和算法解决企业问题)

1.2.1 博主学习经验分享

学好算法必知的几大常识:

  1. 算法难度等级分为:easy —> medium—> hard—> very hard—> extremely hard
  2. 算法学习步骤:算法构思---->写代码—>分析时间空间复杂度
  3. 掌握90道经典高频算法题---->总结出算法思路,比如:BFS广度优先搜索,DFS深度优先搜索,backtracking 回溯
  4. 将算法思路------> 总结出Solution代码模板
  5. 将LeetCode新题-----》转化成经典问题并尝试解决。

1.2.2《labuladong的算法小抄》学习经验分享

如下内容节选自《labuladong的算法小抄》

1.2.2.1 数据结构的存储方式

数据结构的存储方式只有两种:数组(顺序存储)和链表(链式存储)。

这句话怎么理解,不是还有散列表、栈、队列、堆、树、图等等各种数据结构吗?

  • 我们分析问题,一定要有递归的思想,自顶向下,从抽象到具体。你上来就列出这么多,那些都属于「上层建筑」,而数组和链表才是「结构基础」。因为那些多样化的数据结构,究其源头,都是在链表或者数组上的特殊操作,API不同而已。
  • 比如说「队列」、「栈」这两种数据结构既可以使用链表也可以使用数组实现。用数组实现,就要处理扩容缩容的问题;用链表实现,没有这个问题,但需要更多的内存空间存储节点指针。
    -「图」的两种表示方法,邻接表就是链表,邻接矩阵就是二维数组。邻接矩阵判断连通性迅速,并可以进行矩阵运算解决一些问题,但是如果图比较稀疏的话很耗费空间。邻接表比较节省空间,但是很多操作的效率上肯定比不过邻接矩阵。
  • 「散列表」就是通过散列函数把键映射到一个大数组里。而且对于解决散列冲突的方法,拉链法需要链表特性,操作简单,但需要额外的空间存储指针;线性探查法就需要数组特性,以便连续寻址,不需要指针的存储空间,但操作稍微复杂些。
  • 「树」,用数组实现就是「堆」,因为「堆」是一个完全二叉树,用数组存储不需要节点指针,操作也比较简单;用链表实现就是很常见的那种「树」,因为不一定是完全二叉树,所以不适合用数组存储。为此,在这种链表「树」结构之上,又衍生出各种巧妙的设计,比如二叉搜索树、AVL
    树、红黑树、区间树、B 树等等,以应对不同的问题。
  • 了解 Redis 数据库的朋友可能也知道,Redis 提供列表、字符串、集合等等几种常用数据结构,但是对于每种数据结构,底层的存储方式都至少有两种,以便于根据存储数据的实际情况使用合适的存储方式。

综上,数据结构种类很多,甚至你也可以发明自己的数据结构,但是底层存储无非数组或者链表

二者的优缺点如下:

  • 数组由于是紧凑连续存储,可以随机访问,通过索引快速找到对应元素,而且相对节约存储空间。 但正因为连续存储,内存空间必须一次性分配够,所以说数组如果要扩容,需要重新分配一块更大的空间,再把数据全部复制过去,时间复杂度O(N);而且你如果想在数组中间进行插入和删除,每次必须搬移后面的所有数据以保持连续,时间复杂度 O(N)。
  • 链表因为元素不连续,而是靠指针指向下一个元素的位置,所以不存在数组的扩容问题; 如果知道某一元素的前驱和后驱,操作指针即可删除该元素或者插入新元素,时间复杂度
    O(1)。但是正因为存储空间不连续,你无法根据一个索引算出对应元素的地址,所以不能随机访问;而且由于每个元素必须存储指向前后元素位置的指针,会消耗相对更多的储存空间。
1.2.2.2 数据结构的基本操作

对于任何数据结构,其基本操作无非遍历 + 访问,再具体一点就是:增删查改。

数据结构种类很多,但它们存在的目的都是在不同的应用场景,尽可能高效地增删查改。

话说这不就是数据结构的使命么?

如何遍历 + 访问?我们仍然从最高层来看,各种数据结构的遍历 + 访问无非两种形式:线性的和非线性的。

线性就是 for/while 迭代为代表,非线性就是递归为代表。再具体一步,无非以下几种框架:

数组遍历框架,典型的线性迭代结构:

void traverse(int[] arr) {
    for (int i = 0; i < arr.length; i++) {
        // 迭代访问 arr[i]
    }
}

链表遍历框架,兼具迭代和递归结构:

/* 基本的单链表节点 */
class ListNode {
    int val;
    ListNode next;
}

void traverse(ListNode head) {
    for (ListNode p = head; p != null; p = p.next) {
        // 迭代访问 p.val
    }
}

void traverse(ListNode head) {
    // 递归访问 head.val
    traverse(head.next)
}

二叉树遍历框架,典型的非线性递归遍历结构:

/* 基本的二叉树节点 */
class TreeNode {
    int val;
    TreeNode left, right;
}

void traverse(TreeNode root) {
    traverse(root.left)
    traverse(root.right)
}

你看二叉树的递归遍历方式和链表的递归遍历方式,相似不?再看看二叉树结构和单链表结构,相似不?如果再多几条叉,N 叉树你会不会遍历?

二叉树框架可以扩展为 N 叉树的遍历框架:

/* 基本的 N 叉树节点 */
class TreeNode {
    int val;
    TreeNode[] children;
}

void traverse(TreeNode root) {
    for (TreeNode child : root.children)
        traverse(child);
}

N 叉树的遍历又可以扩展为图的遍历,因为图就是好几 N 叉棵树的结合体。你说图是可能出现环的?这个很好办,用个布尔数组 visited 做标记就行了,这里就不写代码了。

所谓框架,就是套路。

不管增删查改,这些代码都是永远无法脱离的结构,你可以把这个结构作为大纲,根据具体问题在框架上添加代码就行了。

1.2.2.3 如何定义构造并遍历二叉树?

Talk is easy, show me the code.

接下来我们通过下面这篇博文学习下如何定义一个二叉树以及构造并遍历一个二叉树。

Java算法篇-LeetCode-104-二叉树的最大深度

1.3 Java算法学习书籍推荐

本篇完~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

极客星云

谢谢认可,希望对你的学习有帮助

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值