S2、函数的概念
-
函数的定义
设A,B是非空的数集,如果按照某种确定的对应关系 f f f,使对于集合A中的任意一个数 x x x,在集合B中都有唯一确定的数 y y y和它对应,那么就称映射 f : A → B f:A\to B f:A→B为从集合A到集合B的一个函数,记作 y = f ( x ) , x ∈ A y=f(x),x\in A y=f(x),x∈A或 f ( A ) = { y ∣ f ( x ) = y , y ∈ B } f(A)=\{y|f(x)=y,y\in B\} f(A)={y∣f(x)=y,y∈B}
-
自变量与因变量
在上述的叙述中的 x x x为自变量, y y y为因变量, f f f为对应法则
-
函数的三要素
{ 定 义 域 : D f 值 域 : R f 对 应 法 则 : f \begin{cases} 定义域:\mathscr{D}_f\\ 值域:\mathscr{R}_f\\ 对应法则:f \end{cases} ⎩⎪⎨⎪⎧定义域:Df值域:Rf对应法则:f -
两个函数等同,必须要求函数关系一样,这一点是容易理解的,可能会遗忘的是函数定义域的问题
考虑 f ( x ) = s i n x g ( x ) = x s i n x x f(x)=\mathop{sin}x\qquad g(x)=\frac{x\mathop{sin}x}{x} f(x)=sinxg(x)=xxsinx
当 x ≠ 0 x\neq0 x=0时, f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x)但 0 ∈ D f 0\in\mathscr{D}_f 0∈Df而 0 ∉ D g 0\notin\mathscr{D}_g 0∈/Dg,故 f ( x ) ≠ g ( x ) f(x)\neq g(x) f(x)=g(x)
-
符号函数— s g n x \mathop{sgn}x sgnx
s g n x = { 1 , x > 0 0 , x = 0 − 1 , x < 0 \mathop{sgn}x=\begin{cases}1\qquad,x>0\\0\qquad,x=0\\-1\qquad,x<0\end{cases} sgnx=⎩⎪⎨⎪⎧1,x>00,x=0−1,x<0
-
取整函数—取“最大整数部分”函数
y
=
[
x
]
,
x
∈
R
y=[x],x\in\R
y=[x],x∈R
-
取“非负小数部分”函数
y = ( x ) , x ∈ R y=(x),x\in\R y=(x),x∈R
( x ) = x − [ x ] (x)=x-[x] (x)=x−[x]