S2、函数的概念

S2、函数的概念

  1. 函数的定义

    设A,B是非空的数集,如果按照某种确定的对应关系 f f f,使对于集合A中的任意一个数 x x x,在集合B中都有唯一确定的数 y y y和它对应,那么就称映射 f : A → B f:A\to B f:AB为从集合A到集合B的一个函数,记作 y = f ( x ) , x ∈ A y=f(x),x\in A y=f(x),xA f ( A ) = { y ∣ f ( x ) = y , y ∈ B } f(A)=\{y|f(x)=y,y\in B\} f(A)={yf(x)=y,yB}

  2. 自变量与因变量

    在上述的叙述中的 x x x为自变量, y y y为因变量, f f f为对应法则

  3. 函数的三要素
    { 定 义 域 : D f 值 域 : R f 对 应 法 则 : f \begin{cases} 定义域:\mathscr{D}_f\\ 值域:\mathscr{R}_f\\ 对应法则:f \end{cases} :Df:Rf:f

  4. 两个函数等同,必须要求函数关系一样,这一点是容易理解的,可能会遗忘的是函数定义域的问题

    考虑 f ( x ) = s i n x g ( x ) = x s i n x x f(x)=\mathop{sin}x\qquad g(x)=\frac{x\mathop{sin}x}{x} f(x)=sinxg(x)=xxsinx

    x ≠ 0 x\neq0 x=0时, f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x) 0 ∈ D f 0\in\mathscr{D}_f 0Df 0 ∉ D g 0\notin\mathscr{D}_g 0/Dg,故 f ( x ) ≠ g ( x ) f(x)\neq g(x) f(x)=g(x)

  5. 符号函数— s g n x \mathop{sgn}x sgnx
    s g n x = { 1 , x > 0 0 , x = 0 − 1 , x < 0 \mathop{sgn}x=\begin{cases}1\qquad,x>0\\0\qquad,x=0\\-1\qquad,x<0\end{cases} sgnx=1,x>00,x=01,x<0
    在这里插入图片描述

  6. 取整函数—取“最大整数部分”函数

y = [ x ] , x ∈ R y=[x],x\in\R y=[x],xR
在这里插入图片描述

  • 取“非负小数部分”函数

    y = ( x ) , x ∈ R y=(x),x\in\R y=(x),xR

    ( x ) = x − [ x ] (x)=x-[x] (x)=x[x]
    在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈哈19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值