人力资源数据分析(python)

该博客探讨了如何通过Python分析人力资源数据,特别是研究工资、职业、月工作小时数与员工满意度之间的关系。作者首先从聚数力网站获取数据,然后利用Pandas库进行数据加载和初步分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目的:工资,职业,月工时和满意度之间有什么关系

从聚数力网站下载源数据后,在pandas中载入数据

import numpy as np
import pandas as pd
data = pd.read_csv(r'D:\Users\Desktop\HR_comma_sep.csv')
data.head()

data.sales.unique()  #查看sales的类别,包括哪些工作类型

data.info()    数据干净,无缺失值
data.groupby(['salary','sales'])['average_montly_hours'].mean()  不同工资,不同工作类别下月工时的均值
背景描述 在人力资源管理领域中,分析各项员工工作相关的数据和指标,可以揭示员工流失的趋势和原因、薪酬公平性、员工满意度以及职业发展路径等关键指标。这些见解对于优化人才招聘、留存策略、绩效评估体系和员工发展计划至关重要。 通过对这些多维数据的深入分析,组织可以制定更加人性化的管理措施,改进工作环境,提高员工的工作满意度和忠诚度,从而推动组织的整体业绩和竞争力。此外,分析结果还支持制定更加公正和激励性的薪酬体系,以吸引和保留顶尖人才,确保组织的长期成功和可持续发展。 数据说明 字段 说明 EmpID 唯一的员工ID Age 年龄 AgeGroup 年龄组 Attrition 是否离职 BusinessTravel 出差:很少、频繁、不出差 DailyRate 日薪 Department 任职部门:研发部门、销售部门、人力资源部门 DistanceFromHome 通勤距离 Education 教育等级 EducationField 专业领域:生命科学、医学、市场营销、技术、其他 EnvironmentSatisfaction 工作环境满意度 Gender 性别 HourlyRate 时薪 JobInvolvement 工作参与度 JobLevel 工作级别 JobRole 工作角色 JobSatisfaction 工作满意度 MaritalStatus 婚姻状况 MonthlyIncome 月收入 SalarySlab 工资单 MonthlyRate 月薪 NumCompaniesWorked 工作过的公司数量 PercentSalaryHike 加薪百分比 PerformanceRating 绩效评级 RelationshipSatisfaction 关系满意度 StandardHours 标准工时 StockOptionLevel 股票期权级别 TotalWorkingYears 总工作年数 TrainingTimesLastYear 去年培训时间 WorkLifeBalance 工作生活平衡评价 YearsAtCompany 在公司工作年数 YearsInCurrentRole 担任现职年数 YearsSinceLastPromotion 上次晋升后的年数 YearsWithCurrManager 与现任经理共事年数 问题描述 员工流失分析 识别导致员工离职的因素(Attrition与其他字段的关系,如满意度、工资、通勤距离等)。 分析不同年龄组、婚姻状况、工作年数与离职率之间的关系。 薪酬公平性研究 比较不同性别(Gender)、教育等级(Education)和专业领域(EducationField)的薪资差异。 探讨工作级别(JobLevel)、工作角色(JobRole)与月收入(MonthlyIncome)、时薪(HourlyRate)、日薪(DailyRate)之间的关系。 工作满意度分析 评估工作满意度(JobSatisfaction)、工作环境满意度(EnvironmentSatisfaction)、关系满意度(RelationshipSatisfaction)与员工绩效(PerformanceRating)之间的关联。 分析工作生活平衡评价(WorkLifeBalance)与工作参与度(JobInvolvement)、在公司工作年数(YearsAtCompany)之间的关系。 职业发展和晋升路径分析 检查晋升历史(YearsSinceLastPromotion)与工作满意度、工作级别和绩效评级之间的关联。 分析员工在当前角色的时间(YearsInCurrentRole)对于工作参与度和晋升机会的影响。 培训和发展需求评估 评估培训次数(TrainingTimesLastYear)与员工绩效评级的关系。 分析工作经验(TotalWorkingYears)与培训需求之间的关系。 员工福利和激励措施分析 探索股票期权级别(StockOptionLevel)对员工留存的影响。 分析加薪百分比(PercentSalaryHike)与员工满意度和绩效的关系。 人力资源规划和预测 预测哪些因素会影响员工留存(如工资、工作满意度、工作环境)。 用历史数据建模,预测员工晋升路径和潜在的流失风险。
人力资源数据分析是指使用Python编程语言对人力资源数据进行处理和分析的过程。在这个过程中,可以使用pandas库来载入和处理数据,numpy库来进行数值计算,以及matplotlib库来可视化数据。 首先,可以使用pandas库的read_csv函数来读取CSV格式的人力资源数据文件。例如,可以使用以下代码将数据文件载入到名为data的DataFrame对象中: ```python import pandas as pd data = pd.read_csv(r'D:\Users\Desktop\HR_comma_sep.csv') ``` 接下来,可以使用data.head()函数来查看数据的前几行,以确保数据正确载入。这将显示DataFrame对象的前几行数据。 要进行人力资源数据的分析,可以使用groupby函数对数据进行分组和聚合操作。例如,可以使用以下代码查看工作类型与工资、工作满意度之间的关系: ```python data1 = data.groupby(\['salary','sales'\])\['satisfaction_level'\].mean().unstack(0).plot(rot = 60) ``` 这将绘制一个图表,横轴为工作类型,纵轴为工作满意度,不同工资水平的数据将以不同的曲线进行展示。 类似地,可以使用以下代码查看工作类型与工资、工作时长之间的关系,并以柱状图的形式展示: ```python data1 = data.groupby(\['salary','sales'\])\['average_montly_hours'\].mean().unstack(0) data1.plot.bar(rot = 60) ``` 这将绘制一个柱状图,横轴为工作类型,纵轴为工作时长,不同工资水平的数据将以不同的颜色进行展示。 通过以上代码,可以对人力资源数据进行分析,并可视化不同变量之间的关系,从而得出一些有关人力资源管理的结论。 #### 引用[.reference_title] - *1* [人力资源数据分析python)](https://blog.csdn.net/hahaha66888/article/details/79837190)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] - *2* *3* [人力资源数据分析(包含数据来源文件)](https://blog.csdn.net/sunzhipan11/article/details/122497051)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值