人力资源数据分析(包含数据来源文件)

数据源

百度网盘:
链接:https://pan.baidu.com/s/1EKxDdJDNqhqzucK6eH0Rew?pwd=1234
提取码:1234

数据字段及解释

在这里插入图片描述

导入数据

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
data = pd.read_csv('C:\\Users\\86199\\Desktop\\HR_comma_sep.csv')
data.head()

在这里插入图片描述

在职情况分析

left_rate=data.left.value_counts()/14999
left_rate

在这里插入图片描述

数据中不同薪水占比

不同薪水占比 = data.salary.
人力资源数据分析是指使用Python编程语言对人力资源数据进行处理和分析的过程。在这个过程中,可以使用pandas库来载入和处理数据,numpy库来进行数值计算,以及matplotlib库来可视化数据。 首先,可以使用pandas库的read_csv函数来读取CSV格式的人力资源数据文件。例如,可以使用以下代码将数据文件载入到名为data的DataFrame对象中: ```python import pandas as pd data = pd.read_csv(r'D:\Users\Desktop\HR_comma_sep.csv') ``` 接下来,可以使用data.head()函数来查看数据的前几行,以确保数据正确载入。这将显示DataFrame对象的前几行数据。 要进行人力资源数据的分析,可以使用groupby函数对数据进行分组和聚合操作。例如,可以使用以下代码查看工作类型与工资、工作满意度之间的关系: ```python data1 = data.groupby(\['salary','sales'\])\['satisfaction_level'\].mean().unstack(0).plot(rot = 60) ``` 这将绘制一个图表,横轴为工作类型,纵轴为工作满意度,不同工资水平的数据将以不同的曲线进行展示。 类似地,可以使用以下代码查看工作类型与工资、工作时长之间的关系,并以柱状图的形式展示: ```python data1 = data.groupby(\['salary','sales'\])\['average_montly_hours'\].mean().unstack(0) data1.plot.bar(rot = 60) ``` 这将绘制一个柱状图,横轴为工作类型,纵轴为工作时长,不同工资水平的数据将以不同的颜色进行展示。 通过以上代码,可以对人力资源数据进行分析,并可视化不同变量之间的关系,从而得出一些有关人力资源管理的结论。 #### 引用[.reference_title] - *1* [人力资源数据分析python)](https://blog.csdn.net/hahaha66888/article/details/79837190)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] - *2* *3* [人力资源数据分析包含数据源文件)](https://blog.csdn.net/sunzhipan11/article/details/122497051)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值