自动化投诉处理:思通数科大模型在智能文本提取与分类中的应用

本文介绍了思通数科大模型如何运用自然语言处理和文本分类技术,实现消费者投诉的自动化处理,提升效率和准确性,减少人工错误,优化资源分配,并展望了未来的发展挑战与潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在消费者权益保护领域,处理投诉和举报是一项重要但繁琐的工作。传统的人工处理方式不仅耗时耗力,而且容易出错。随着自然语言处理(NLP)和文本分类技术的发展,自动化的投诉处理成为可能。本文将探讨思通数科大模型在智能文本提取与分类中的应用,以及其如何助力实现投诉处理流程的自动化和高效化。

一、自动化投诉处理的需求背景

消费者投诉和举报内容包含大量关键信息,如消费者诉求、经营者未履行义务的原因等,这些信息对于后续的处理至关重要。然而,人工提取这些信息不仅效率低下,而且容易出错。

二、思通数科大模型在智能文本提取中的应用

思通数科的大模型结合了自然语言处理和文本分类技术,能够自动识别并提取文本中的关键信息。该模型能够:

  1. 自动识别:识别文本中的消费者诉求和经营者未履行义务的原因。
  2. 关键信息提取:提取文本中的生产厂家、品牌、销售方式等细节。
  3. 智能分类:将提取的信息自动分类并填写到相应的字段中。

文本分类项目列表.png

三、技术实现与工作流程

  1. 文本信息采集:收集消费者提交的投诉和举报文本。
  2. 预处理:对文本进行清洗、分词等预处理操作。
  3. 信息提取:利用思通数科大模型提取文本中的关键信息。
  4. 自动填写:将提取的信息自动填写到系统中的相应字段。
  5. 标记疑似情况:标记疑似职业打假的情况,供进一步分析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值