keras输出中间层结果的2种方法

版权声明:本文为博主原创文章,转载请写明来源。 https://blog.csdn.net/hahajinbu/article/details/77982721

1.使用函数模型API,新建一个model,将输入和输出定义为原来的model的输入和想要的那一层的输出,然后重新进行predict.

#coding=utf-8
import seaborn as sbn
import pylab as plt
import theano
from keras.models import Sequential
from keras.layers import Dense,Activation


from keras.models import Model

model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(16, activation='relu',name="Dense_1"))
model.add(Dense(1, activation='sigmoid',name="Dense_2"))
model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

# Generate dummy data
import numpy as np
#假设训练和测试使用同一组数据
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))

# Train the model, iterating on the data in batches of 32 samples
model.fit(data, labels, epochs=10, batch_size=32)
#已有的model在load权重过后
#取某一层的输出为输出新建为model,采用函数模型
dense1_layer_model = Model(inputs=model.input,
                                     outputs=model.get_layer('Dense_1').output)
#以这个model的预测值作为输出
dense1_output = dense1_layer_model.predict(data)

print dense1_output.shape
print dense1_output[0]


2.因为我的后端是使用的theano,所以还可以考虑使用theano的函数:

#这是一个theano的函数
dense1 = theano.function([model.layers[0].input],model.layers[1].output,allow_input_downcast=True)
dense1_output = dense1(data)  #visualize these images's FC-layer feature
print dense1_output[0]


效果应该是一样的。

展开阅读全文

没有更多推荐了,返回首页