论文笔记-A Single Stream Network for Robust and Real-time RGB-D Salient Object Detection

本文探讨了显著目标检测的重要性,尤其是在深度信息的帮助下,如何处理复杂场景。现有的RGB-D方法存在参数过多和未充分利用深度图的问题。研究提出了一种单流网络,通过早期和中期融合,减少深度流编码器,创建轻量级实时模型。同时,引入了深度增强双向注意力模块(DEDA)和金字塔特征提取模块(PAFE),以改善特征提取和定位能力,适用于各种尺度的物体检测。
摘要由CSDN通过智能技术生成

昨天当作15天休息一天吧
那么今天就是论文阅读计划的第16天了

今天开始介绍目标检测相关的论文啦~

天池有一个将这篇论文的视频,感兴趣的朋友可以去看看:https://tianchi.aliyun.com/course/video?liveId=41223

一、背景

显著目标检测旨在估计图像区域的视觉意义,进而分割出显著目标。它已被广泛应用于许多领域,例如场景分类[29]、视觉跟踪[21]、人的重新识别[30]、前景图评估[10]、内容感知图像编辑[52]、光场图像分割[36]和图像字幕[14]等。

随着深度卷积神经网络的发展,大量基于深度卷积神经网络的方法[33,44,35,37,43,6,45,42,39,27,38,24,48]被提出用于RGB显著目标检测,并取得了令人满意的性能。然而,一些复杂的场景仍然没有解决,例如突出的对象与背景具有相似的外观,或者不同对象之间的对比度极低。在这些情况下,仅使用RGB图像提供的信息不足以很好地预测显著图。

最近得益于微软Kinect和英特尔RealSense设备,可以方便地获取深度信息。此外,深度图中描绘的稳定几何结构对于亮度和纹理的变化是鲁棒的,这可以为处理复杂环境提供重要的补充信息。

现有的三维显著目标检测方法主要集中在深度流和RGB流的跨模态融合上。他们没有深入探究深度图本身的效果。

二、现有方法存在的缺点

  • 参数量过大
  • 没有利用好
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值