昨天当作15天休息一天吧
那么今天就是论文阅读计划的第16天了
今天开始介绍目标检测相关的论文啦~
天池有一个将这篇论文的视频,感兴趣的朋友可以去看看:https://tianchi.aliyun.com/course/video?liveId=41223
一、背景
显著目标检测旨在估计图像区域的视觉意义,进而分割出显著目标。它已被广泛应用于许多领域,例如场景分类[29]、视觉跟踪[21]、人的重新识别[30]、前景图评估[10]、内容感知图像编辑[52]、光场图像分割[36]和图像字幕[14]等。
随着深度卷积神经网络的发展,大量基于深度卷积神经网络的方法[33,44,35,37,43,6,45,42,39,27,38,24,48]被提出用于RGB显著目标检测,并取得了令人满意的性能。然而,一些复杂的场景仍然没有解决,例如突出的对象与背景具有相似的外观,或者不同对象之间的对比度极低。在这些情况下,仅使用RGB图像提供的信息不足以很好地预测显著图。
最近得益于微软Kinect和英特尔RealSense设备,可以方便地获取深度信息。此外,深度图中描绘的稳定几何结构对于亮度和纹理的变化是鲁棒的,这可以为处理复杂环境提供重要的补充信息。
现有的三维显著目标检测方法主要集中在深度流和RGB流的跨模态融合上。他们没有深入探究深度图本身的效果。
二、现有方法存在的缺点
- 参数量过大
- 没有利用好