机器学习算法-逻辑回归

一. 逻辑回归模型

1.1 逻辑回归定义

LR 是一种简单、高效的常用分类模型,能处理二分类或者多分类。

1.2 逻辑回归模型

sigmoid 函数
对线性回归的结果做一个在函数g上的转换,可以变化为逻辑回归,这个函数g在逻辑回归中我们一般取为sigmoid函数,形式如下:
g ( z ) = 1 1 + e − z g(z)=\frac{1}{1+e^{-z}} g(z)=1+ez1
另外 这个函数有两个很好的特性:
(1)z 趋于正无穷时,g(z)->1, z 趋于负无穷时, g(z) ->0; 在二维坐标中展现成:

在这里插入图片描述

(2)g′(z)=g(z)(1−g(z))
== 逻辑回归一般模型:==
如果我们令g(z)中的z为:z=xθ,这样就得到了二元逻辑回归模型的一般形式:
h ( x θ ) = 1 1 + e − x θ h(x\theta) =\frac{1}{1+e^{-x\theta}} h(xθ)=1+exθ1
其中x为样本输入,hθ(x)为模型输出,可以理解为某一分类的概率大小。而θ为分类模型的要求出的模型参数。对于模型输出hθ(x),我们让它和我们的二元样本输出y(假设为0和1)有这样的对应关系,如果hθ(x)>0.5 ,即xθ>0, 则y为1。如果hθ(x)<0.5,即xθ<0,

二. 代价函数求解

2.1 定义代价函数的方法

由于线性回归是连续的,所以可以使用模型误差的的平方和来定义损失函数,但是逻辑回归不是连续的,自然线性回归损失函数定义的经验就用不上了。不过我们可以用最大似然法来推导出我们的损失函数:

(1) y 的概率分布函数表达式:
P ( y = 1 ∣ x , θ ) = h θ ( x ) P(y=1|x,\theta) = h_\theta(x) P(y=1x,θ)=hθ(x)
P ( y = 0 ∣ x , θ ) = 1 − h θ ( x ) P(y=0|x,\theta) = 1-h_\theta(x) P(y=0x,θ)=1hθ(x)
(2) 根据概率分布函数,我们就可以用似然函数最大化来求解我们需要的模型系数θ; 使得给定的输入x, 输出的y 的概率最大。最大似然函数:
L ( θ ) = ∏ i = 1 m ( h θ ( x ( i ) ) ) y ( i ) ( 1 − h θ ( x ( i ) ) ) 1 − y ( i ) L(\theta)=\prod_{i=1}^{m}(h_\theta(x^{(i)}))y^{(i)}(1-h_\theta(x^{(i)}))^{1-y^{(i)}} L(θ)=i=1m(hθ(x(i)))y(i)(1hθ(x(i)))1y(i)
(3) 代价函数表达式:
J ( θ ) = − 1 m ∑ i = 1 m ( y ( i ) l o g ( h θ ( x ( i ) ) ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) J(\theta)=-\frac{1}{m}\sum_{i=1}^{m}(y^{(i)}log(h_\theta(x^{(i)})))+(1-y^{(i)})log(1-h_\theta(x^{(i)})) J(θ)=m1i=1m(y(i)log(hθ(x(i))))+(1y(i))log(1hθ(x(i)))

2.2 代价函数求解方法-梯度下降

在这里插入图片描述

三. Sklearn 参数说明

详细参数说明
这里对 OVO,OVR ,MVM 进行补充说明:
OVR 是将一个类的样例作为正例,所有其他类的样例作为返利来训练N个分类器。在测试的时候弱仅有一个分类器预测为正类,则对应的类别标记作为最终分类结果,如果有多个分类器预测为正类,通常考虑各个分类器的置信度。
OvR相对简单,但分类效果相对略差(这里指大多数样本分布情况,某些样本分布下OvR可能更好)。而MvM分类相对精确,但是分类速度没有OvR快
在这里插入图片描述

四. 常见问题

  1. 共线性问题给逻辑回归或者线性回归带来的影响? 详细推导
    共线性并不影响模型的训练精度。但是对于泛化精度,由于参数的估计已经不准确,所以泛化误差要差些
    a. 模型缺乏稳定性。样本的微小扰动都可能带来参数很大的变化;
    b. 参数的标准差偏大,相应的 t 统计量会偏小,这样容易淘汰一些不应淘汰的解释变量,使统计检验的结果失去可靠性。
    c. 难以区分每个解释变量的单独影响

  2. 逻辑回归的优缺点?
    优点:
    1.模型的可解释性强,可以通过参数值看到特征对结果的影响
    2.既可以得到分类结果也可以得到类别的概率值
    3. 方便调整输出结果,通过调整阈值的方式
    缺点:
    1.模型的准确性不高
    2.数据不平衡时,对正负样本的区分能力差
    3.模型对共线性问题比较敏感:变量共线性时,标准差比较大,模型不太稳定

  3. 逻辑回归中的假设?
    1.因变量服从伯努利分布。
    2.假设样本为正的概率 p 为一个 Sigmoid 函数。

  4. 逻辑回归与线性回归的区别?
    1.线性回归因变量服从高斯分布, 逻辑回归要求因变量服从伯努利分布。
    2.线性回归要求因变量是连续性数值变量,而logistic回归要求因变量是分类型变量。
    3.线性回归要求自变量和因变量呈线性关系,而logistic回归不要求自变量和因变量呈线性关系
    4.logistic回归是分析因变量取某个值的概率与自变量的关系,而线性回归是直接分析因变量与自变量的关系
    5.线性回归的损失函数是 square loss, 逻辑回归的损失函数是 log-loss 查看不同损失函数定义

参考

1.吴恩达机器学习
2.逻辑回归
3.线性回归和逻辑回归的整理
4.李烨-机器学习极简入门课
5.共线性问题

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值