1. B 样条曲线弧长定义
设一条参数化 B 样条曲线为 C(u),其中 u ∈ [a, b]。
其弧长 L 定义为:
L = ∫ₐᵇ ‖C′(u)‖ du
其中:
- C′(u) 表示曲线对参数 u 的一阶导数(即切向量),
- ‖·‖ 表示向量的欧几里得范数(即长度),
- a 和 b 是积分区间(通常为节点矢量的有效参数范围,如 [u₃, uₙ₊₁] 对于三次 B 样条)。
2. 高斯–勒让德积分公式
将上述积分通过变量变换映射到标准区间 [−1, 1]:
∫ₐᵇ f(u) du = (b − a)/2 ⋅ ∫₋₁¹ f( (b − a)/2 ⋅ t + (a + b)/2 ) dt
然后用 n 点高斯–勒让德求积公式近似:
∫₋₁¹ g(t) dt ≈ Σᵢ₌₁ⁿ wᵢ ⋅ g(tᵢ)
因此,弧长近似为:
L ≈ (b − a)/2 ⋅ Σᵢ₌₁ⁿ wᵢ ⋅ ‖C′( u(tᵢ) )‖
其中:
- tᵢ 是第 i 个高斯点(在 [−1, 1] 区间内),
- wᵢ 是对应的高斯权重,
- u(tᵢ) = (b − a)/2 ⋅ tᵢ + (a + b)/2 是映射回原参数区间的值。
3. 计算步骤总结
- 确定 B 样条曲线的参数区间 [a, b](例如非零基函数起止节点)。
- 选择高斯积分点数 n(常用 n = 5, 8, 16;精度随 n 增加而提高)。
- 获取 n 点高斯–勒让德积分的节点 {tᵢ} 和权重 {wᵢ}(可查表或调用数值库)。
- 对每个 i = 1 到 n:
- 计算 uᵢ = (b − a)/2 ⋅ tᵢ + (a + b)/2
- 计算曲线在 uᵢ 处的一阶导数 C′(uᵢ)
- 计算速度大小 sᵢ = ‖C′(uᵢ)‖
- 求和得到弧长近似值:
L ≈ (b − a)/2 ⋅ Σᵢ₌₁ⁿ wᵢ ⋅ sᵢ
4. 示例(n = 2 高斯点)
对于 n = 2:
- t₁ = −1/√3 ≈ −0.5773502692,w₁ = 1
- t₂ = +1/√3 ≈ +0.5773502692,w₂ = 1
则:
L ≈ (b − a)/2 ⋅ [ ‖C′(u(t₁))‖ + ‖C′(u(t₂))‖ ]
如需更高精度,推荐使用 n = 8 或 n = 16 的高斯点表。
341

被折叠的 条评论
为什么被折叠?



