使用高斯积分法计算 B 样条曲线长度的方法介绍

1. B 样条曲线弧长定义

设一条参数化 B 样条曲线为 C(u),其中 u ∈ [a, b]。
其弧长 L 定义为:

L = ∫ₐᵇ ‖C′(u)‖ du

其中:

  • C′(u) 表示曲线对参数 u 的一阶导数(即切向量),
  • ‖·‖ 表示向量的欧几里得范数(即长度),
  • a 和 b 是积分区间(通常为节点矢量的有效参数范围,如 [u₃, uₙ₊₁] 对于三次 B 样条)。

2. 高斯–勒让德积分公式

将上述积分通过变量变换映射到标准区间 [−1, 1]:

∫ₐᵇ f(u) du = (b − a)/2 ⋅ ∫₋₁¹ f( (b − a)/2 ⋅ t + (a + b)/2 ) dt

然后用 n 点高斯–勒让德求积公式近似:

∫₋₁¹ g(t) dt ≈ Σᵢ₌₁ⁿ wᵢ ⋅ g(tᵢ)

因此,弧长近似为:

L ≈ (b − a)/2 ⋅ Σᵢ₌₁ⁿ wᵢ ⋅ ‖C′( u(tᵢ) )‖

其中:

  • tᵢ 是第 i 个高斯点(在 [−1, 1] 区间内),
  • wᵢ 是对应的高斯权重,
  • u(tᵢ) = (b − a)/2 ⋅ tᵢ + (a + b)/2 是映射回原参数区间的值。

3. 计算步骤总结

  1. 确定 B 样条曲线的参数区间 [a, b](例如非零基函数起止节点)。
  2. 选择高斯积分点数 n(常用 n = 5, 8, 16;精度随 n 增加而提高)。
  3. 获取 n 点高斯–勒让德积分的节点 {tᵢ} 和权重 {wᵢ}(可查表或调用数值库)。
  4. 对每个 i = 1 到 n:
    • 计算 uᵢ = (b − a)/2 ⋅ tᵢ + (a + b)/2
    • 计算曲线在 uᵢ 处的一阶导数 C′(uᵢ)
    • 计算速度大小 sᵢ = ‖C′(uᵢ)‖
  5. 求和得到弧长近似值:

L ≈ (b − a)/2 ⋅ Σᵢ₌₁ⁿ wᵢ ⋅ sᵢ

4. 示例(n = 2 高斯点)

对于 n = 2:

  • t₁ = −1/√3 ≈ −0.5773502692,w₁ = 1
  • t₂ = +1/√3 ≈ +0.5773502692,w₂ = 1

则:

L ≈ (b − a)/2 ⋅ [ ‖C′(u(t₁))‖ + ‖C′(u(t₂))‖ ]

如需更高精度,推荐使用 n = 8 或 n = 16 的高斯点表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haing2019

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值