Tensorrt 实现 yolov5-cls 遇到的问题

在这里插入图片描述

yolov5-6.2增加了分类训练、验证、预测和导出(所有 11 种格式),还提供了 ImageNet 预训练的 YOLOv5m-cls、ResNet(18、34、50、101) 和 EfficientNet (b0-b3) 模型.

官方Git : https://github.com/ultralytics/yolov5

分类模型与精度

在这里插入图片描述


基于Tensorrtx 实现 yolov5 cls

  • 这里就不介绍如何实现了,博主写的很详细,参考博主大佬就行。 https://github.com/wang-xinyu/tensorrtx/tree/master/yolov5

  • 主要阐述下实现过程中遇到的问题

    1. 转换训练后的模型去预测,发现结果是不正确的。使用长和宽比例是1:1的图片预测,结果就是正确的。 后来一番鼓捣,发现训练的前处理和 tensorrtx 的前处理方式是不一样的,所以果断修改了下训练的前处理,然后重新训练后,结果就正确了。

    2. 修改 ./utils/augmentations.py, 将 classify_transforms 方法中, CenterCrop -> LetterBox

    3. 大家可以尝试下,看看是否会遇到一样的问题. (输入的图片长宽不相等)


参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值