Pycharm中对Con2d函数的理解

本文深入解析PyCharm中nn.Conv2d函数的使用,详细介绍了参数如in_channels、out_channels、kernel_size、stride、padding、dilation和groups的作用,并探讨了它们如何影响深度学习模型的输出大小。
摘要由CSDN通过智能技术生成

nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zero')

in_channels:输入信号通道个数

out_channels:输出信号通道个数

kernel_size:卷积核的大小

stride:步长

padding:输入的每一条边补充0的层数

dilation:卷积核默认的间距,默认为1

groups:从输入通道到输出通道的将数据分为几组,每组channel重用几次,out_channels/groups计算得到,其必须被输出通道和输入通道整除,默认为1

输出大小为:

import torch
import torch.nn as nn
a = nn.Conv2d(in_channels=3,out_channels=4,kernel_size=2,padding=0)
print(a)
print(list(a.parameters())[0].shape)
X = torch.rand((1,3,3,3))
print(X)
print(a(X))

得出的结果为

Conv2d(3, 4, kernel_size=(2, 2), 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值