nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True,padding_mode='zero')
in_channels:输入信号通道个数
out_channels:输出信号通道个数
kernel_size:卷积核的大小
stride:步长
padding:输入的每一条边补充0的层数
dilation:卷积核默认的间距,默认为1
groups:从输入通道到输出通道的将数据分为几组,每组channel
重用几次,out_channels/groups
计算得到,其必须被输出通道和输入通道整除,默认为1
输出大小为:
import torch
import torch.nn as nn
a = nn.Conv2d(in_channels=3,out_channels=4,kernel_size=2,padding=0)
print(a)
print(list(a.parameters())[0].shape)
X = torch.rand((1,3,3,3))
print(X)
print(a(X))
得出的结果为
Conv2d(3, 4, kernel_size=(2, 2),