You are given an undirected graph consisting of n� vertices and m� edges. Your task is to find the number of connected components which are cycles.
Here are some definitions of graph theory.
An undirected graph consists of two sets: set of nodes (called vertices) and set of edges. Each edge connects a pair of vertices. All edges are bidirectional (i.e. if a vertex a� is connected with a vertex b�, a vertex b� is also connected with a vertex a�). An edge can't connect vertex with itself, there is at most one edge between a pair of vertices.
Two vertices u� and v� belong to the same connected component if and only if there is at least one path along edges connecting u� and v�.
A connected component is a cycle if and only if its vertices can be reordered in such a way that:
- the first vertex is connected with the second vertex by an edge,
- the second vertex is connected with the third vertex by an edge,
- ...
- the last vertex is connected with the first vertex by an edge,
- all the described edges of a cycle are distinct.
A cycle doesn't contain any other edges except described above. By definition any cycle contains three or more vertices.
There are 66 connected components, 22 of them are cycles: [7,10,16][7,10,16] and [5,11,9,15][5,11,9,15].
Input
The first line contains two integer numbers n� and m� (1≤n≤2⋅1051≤�≤2⋅105, 0≤m≤2⋅1050≤�≤2⋅105) — number of vertices and edges.
The following m� lines contains edges: edge i� is given as a pair of vertices vi��, ui�� (1≤vi,ui≤n1≤��,��≤�, ui≠vi��≠��). There is no multiple edges in the given graph, i.e. for each pair (vi,ui��,��) there no other pairs (vi,ui��,��) and (ui,vi��,��) in the list of edges.
Output
Print one integer — the number of connected components which are also cycles.
Examples
input
Copy
5 4 1 2 3 4 5 4 3 5
output
Copy
1
input
Copy
17 15 1 8 1 12 5 11 11 9 9 15 15 5 4 13 3 13 4 3 10 16 7 10 16 7 14 3 14 4 17 6
output
Copy
2
Note
In the first example only component [3,4,5][3,4,5] is also a cycle.
The illustration above corresponds to the second example.
题目大意:
有n个点,m条边,问只能首尾相连的链条有多少个?
思路:
根据链条的特性,可以知道合法链条上的每个点都连着两个其他的点。
用dfs遍历符合特性的链条。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define endl "\n"
const ll N = 2e5+7;
ll n,m;
ll v[N];
bool vis[N],f;
vector<ll>lian[N];
void dfs(ll x){
if(vis[x])return;
vis[x]=1;//标记点来过
if(lian[x].size() != 2)f=0;//此条链不可用
for(auto i : lian[x])dfs(i);//遍历链上所有点
return;
}
void solve(){
cin >> n >> m;
ll x,y,sum=0;
while(m --){
cin >> x >> y;
lian[x].push_back(y);
lian[y].push_back(x);
}
for(ll i = 1 ; i <= n ; i ++){
if(vis[i])continue;
f=1;
dfs(i);
if(f)sum++;
}
cout << sum << endl;
return;
}
int main(){
ll t=1;//cin >> t;
while(t--)solve();
return 0;
}