文章目录
1. 机器学习的基本认识
Mechine Learning 在很大程度上就是为了寻找适合任务的函式。通过使用的数据来完成在整个Model下的Function pick。
机器学习的主要框架或者流程可以使用下图做一个表述。
机器学习的内容图
不同的情境下有不同的机器学习方式:
- 在数据的Lable是十分完善的情况下,使用的是监督学习(Supervised Learing)
- 在只有少量的data包含Lable,但没有Lable的data对机器的学习仍有一定的帮助(semi-supervised learing)
- 有包含某一类的数据的情况下,那另一类的数据对机器学习有的帮助 (Transfer Learning)
- 对于Model只有输入\输出但没有输出\输入那这就是无监督学习(Unsupervised Learning)
- 强化学习是说,在训练的方式上,不再是手把手教学而是只告诉最后结果的好坏,着一过程更加贴近人类的学习情景(Reinforcement Learing)
这里需要注意的是:在半监督学习中回归和分类只是很小的task 的一部分。Structure Learing可能拥有更广泛的应用场景