[李宏毅 机器学习笔记] 机器学习概览

1. 机器学习的基本认识

  Mechine Learning 在很大程度上就是为了寻找适合任务的函式。通过使用的数据来完成在整个Model下的Function pick。
  机器学习的主要框架或者流程可以使用下图做一个表述。

在这里插入图片描述


  机器学习的内容图
在这里插入图片描述
  不同的情境下有不同的机器学习方式:

  • 在数据的Lable是十分完善的情况下,使用的是监督学习(Supervised Learing)
  • 在只有少量的data包含Lable,但没有Lable的data对机器的学习仍有一定的帮助(semi-supervised learing)
  • 有包含某一类的数据的情况下,那另一类的数据对机器学习有的帮助 (Transfer Learning)
  • 对于Model只有输入\输出但没有输出\输入那这就是无监督学习(Unsupervised Learning)
  • 强化学习是说,在训练的方式上,不再是手把手教学而是只告诉最后结果的好坏,着一过程更加贴近人类的学习情景(Reinforcement Learing)

  这里需要注意的是:在半监督学习中回归和分类只是很小的task 的一部分。Structure Learing可能拥有更广泛的应用场景

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Haley__xu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值