从前有个3年级的小朋友,由于考试拿了第二名,于是获取了一笔巨款300元。一开始他特别兴奋,但是 紧接着他就陷入了选择困惑。
第一是把这笔钱去买他喜欢的动感奥特曼模型。
第二是把这笔钱上交给老妈,去买个新的课程。
第三是把钱存起来,明年继续争取奖金,然后凑够400块去买他最喜欢的动感巨型奥特曼模型。
该怎么选呢?内心深深地困惑。
让我们来建模,让这个小朋友的幸福期待最大化吧。得到动感奥特曼模型的幸福感为x0.^(t0); 我们再调研下这个课程的潜在幸福感也建模为 x1.^(t1)+x2^(t2); 得到巨型动感奥特曼模型的幸福感为 x3^(t3)等。
但是这么多未知变量,该怎么办呢? 那就是调研了。按妈妈对小朋友的了解,他对这个玩具的期许程度,新鲜程度。用以往数据作为参考。 而课程也绝壁不是越多越好的,课程时间,课程老师的水准,小朋友的兴趣程度,考试相关等。 这些也是用以往数据做参考。 小朋友明年获取奖金的机会有多大,明年他会不会就不想要这个奥特曼了? 毕竟童年乐趣一去不复返呀。 看到了么? 当我们对一个新的情景出现的时候,我们的脑海里会对情景建模,而模型的数据来自过去的数据, 然后 将当前情景的数据代入, 然后 做出新的决定。而这次决定的结果又会重新更新我们的模型,下一次我们很可能又由于我们这次决定的结果而做出不同的结果。因为参数因为本次输入而修改了。
最大似然法,迭代更新,在我们的生活中一直在进行。而它的更新目标来自我们内心当时的渴望。算法不枯燥,它是 数字化地表达一些我们脑袋里的想法而已