幸福最大似然

从前有个3年级的小朋友,由于考试拿了第二名,于是获取了一笔巨款300元。一开始他特别兴奋,但是 紧接着他就陷入了选择困惑。

第一是把这笔钱去买他喜欢的动感奥特曼模型。

第二是把这笔钱上交给老妈,去买个新的课程。

第三是把钱存起来,明年继续争取奖金,然后凑够400块去买他最喜欢的动感巨型奥特曼模型。

该怎么选呢?内心深深地困惑。

让我们来建模,让这个小朋友的幸福期待最大化吧。得到动感奥特曼模型的幸福感为x0.^(t0);  我们再调研下这个课程的潜在幸福感也建模为 x1.^(t1)+x2^(t2);   得到巨型动感奥特曼模型的幸福感为 x3^(t3)等。

但是这么多未知变量,该怎么办呢? 那就是调研了。按妈妈对小朋友的了解,他对这个玩具的期许程度,新鲜程度。用以往数据作为参考。 而课程也绝壁不是越多越好的,课程时间,课程老师的水准,小朋友的兴趣程度,考试相关等。 这些也是用以往数据做参考。 小朋友明年获取奖金的机会有多大,明年他会不会就不想要这个奥特曼了? 毕竟童年乐趣一去不复返呀。 看到了么? 当我们对一个新的情景出现的时候,我们的脑海里会对情景建模,而模型的数据来自过去的数据, 然后 将当前情景的数据代入, 然后 做出新的决定。而这次决定的结果又会重新更新我们的模型,下一次我们很可能又由于我们这次决定的结果而做出不同的结果。因为参数因为本次输入而修改了。

 

最大似然法,迭代更新,在我们的生活中一直在进行。而它的更新目标来自我们内心当时的渴望。算法不枯燥,它是 数字化地表达一些我们脑袋里的想法而已

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值