入行AI,学习AI,今年似乎也成为了一个十分热门的话题之一。最近也是在看一些相关的资讯和文章,关于机器学习,是否应该更加理性的对待和了解?关于AI,是否是未来程序员必备技能之一?我想,只有更加深入的去了解一下,才会得到自己的那一份答案。
1、行业情况
从2018年各大企业的搜罗式校招,可以看出,“算法”、“人工智能”、“数据挖掘”、“云平台”等频频出现的词汇已经遍布校招会场的各个角落。从这些信息去看,确实发现,机器学习,成为了IT发展AI方面的一个硬性需求。
而且,由于现有人才的稀缺,薪资水平也似乎成“指数”一般地增长,形成了龙头企业,大公司争抢人才的一种现象。这就让“人工智能”正式处在了炙手可热的风口浪尖上。甚至还会有人在讨论:是不是现在的程序员,不会机器学习,都不好意思出去找工作?
那么,想进入这样的风口,具备任职AI相关的岗位,又该有怎样的知识储备呢?
2、知识储备
从公司层面去招聘AI人才的方式渠道上来看,若想求得一份这样的工作,掌握机器学习的运行原理、推导过程、优化方法、模型概念等,是入坑的基本知识储备。当然,大神和菜鸟的区别,就在于你储备的知识量和实际的应用能力的熟练程度,解决问题的的水平,时间效率和创造的市场价值等层面去评估。
京东的无人快递车,Google Brain 的 AutoML,机器进入生活,已经不再是“科幻”那么遥远,相反地,已经进入了我们的生活当中。而这些智能产品,又是怎么工作的呢?它们的背后是否用到机器学习的模型?
input -> output
从机器学习的角度去思考,简单来说,能够将学习到的基本规律运用到日常生活中,判断万事万物的“观点”、“看法”、“洞察”,实际上都是我们头脑中一个个“模型”对所闻所见(输入数据)进行“预测”的结果。这些模型自身的质量,直接导致了预测结果的合理性。通过训练各式各样的思维模型,改进算法和增大数据量及数据多样性来提升模型质量,就可以看到,“新”的数据世界展现在你的眼前。
借鉴机器学习认识客观规律的过程,可以知道,模型是由数据和算法决定的。数据是我们经过见过的万事万物,而算法则是我们的思辨能力。
3、正确理解
毫无疑问,现在大众所理解的“人工智能“甚至有点被魔幻化。也吸引了不少的小哥哥小姐姐们,慌慌张张报个2万的培训班,求翻身、求人生巅峰。学习的热情高涨,这并不是坏事,但具备基本的判断能力,才不会被所谓的高薪字眼冲昏了头脑。理性的分析,就显得尤为重要。
人工智能从提出到现在几十年,已经数度沉浮。这些年间,模型、算法、实现技术更迭了几代,如今和当年已经是天壤之别。
但所有的发展都不是凭空出现的,新的方法、技术都是在原有基础上的创新。每一个具体的进步,都仅仅是向前的一小步而已。
最容易创新的是技巧和细节,越“大”的创新,出现的频率越低。而原理所揭示的,就是这种“大”的,相对稳定的东西。
在实际的应用场景当中,所涉及的技术实现,经典的机器模型,都是前人大牛经历漫长的岁月的科技结晶。了解一件事是如何运行的;明晰事物发展的客观规律;知道从最简单的原理学起逐层推进,比从一个已经很复杂的状态入手一下子纠缠在各种不得要领的细节中要高效得多。
有了这样的认识,也就不会被一些名词所局限。不会仅仅因为人家做了一些细节改变,或者换了个说法就以为天翻地覆了。
4、学习什么?
关于这个,我也是从Microsoft的工程师李烨分享的一些课程中,得到了一些启发。
入门,应该从统计学方面学习和研究。一方面深度学习与机器学习具有传承的关系,学习后者对于直观地理解前者有极大帮助。另一方面,统计学习方法建立在将概念“数字化”(向量化)的基础上,以数学公式和计算来表达概念之间的关联及转化关——机器学习是一种认识世界的工具,借助它,我们可以从一个新的角度来看待世间万物。
换句话说,当我们知道机器是怎样通过学习事物特征的概率分布和转换来掌握事物规律的时候,我们就有可能反过来审视自己看待世界的方法,发现其中不合理的部分,并主动优化自己的思维模型。学习机器学习原理和公式推导,并非只是做一些无聊的数字变换。很可能由此为我们打开一扇窗,让我们从新的角度就看待世界,并为日常决定的思考过程提供更加可量化方法。
以模型为驱动,了解“机器学习”的本质,并了解自身的兴趣爱好等其它因素。正确理性的对待一个行业、一种人生,才是对自己负责。
------------------------------------------
有任何建议或问题,欢迎加微信一起学习交流,欢迎从事IT,热爱IT,喜欢深挖源代码的行业大牛加入,一起探讨。
个人微信号:bboyHan