【数理逻辑】命题逻辑的等值演算与推理演算 ( 命题逻辑 | 等值演算 | 主合取 ( 析取 ) 范式 | 推理演算 ) ★★



参考博客 :





一、 命题逻辑基本概念



命题逻辑基本概念

  • 命题逻辑联结词
  • 真值表
  • 命题逻辑类型 : 可满足式 , 永真式 , 永假式 ;

1 . 命题公式 组成 :

① 单个 命题变元 / 命题常元 是命题公式 ;

② 如果 A A A 是命题公式 , 则 ( ¬ A ) (\lnot A) (¬A) 也是命题公式 ;

③ 如果 A , B A,B A,B 是命题公式 , 则 ( A ∧ B ) , ( A ∨ B ) , ( A → B ) , ( A ↔ B ) (A \land B) , (A \lor B), (A \to B), (A \leftrightarrow B) (AB),(AB),(AB),(AB) 也是命题公式 ;

有限次 应用 ① ② ③ 形成的符号串 是命题公式 ; ( 无限次不行 )



2 . 联结词 :

原子命题 : p , q , r p , q , r p,q,r 表示 原子命题 , 又称为 简单命题 ;

  • 真 : 1 1 1 表示 命题真值 为真 ;
  • 假 : 0 0 0 表示 命题真值 为假 ;

联结词 : 上一篇博客 【数理逻辑】谓词逻辑 ( 个体词 | 个体域 | 谓词 | 全称量词 | 存在量词 | 谓词公式 | 习题 ) 三. 联结词 章节讲解了联结词 ;

  • 否定联结词 : ¬ \lnot ¬
  • 合取联结词 : ∧ \land , p ∧ q p \land q pq , p q pq pq 同真, 结果才为真 , 其余情况为假 ;
  • 析取联结词 : ∨ \lor , p ∨ q p \lor q pq , p q pq pq 同假, 结果才为假 , 其余情况为真 ;
  • 蕴涵联结词 : → \to , p → q p \to q pq , p p p q q q 假, 结果才为假 , 其余情况为真 ;
  • 等价联结词 : ↔ \leftrightarrow , p ↔ q p \leftrightarrow q pq , p q pq pq 真值相同时为真 , 表示等价成立 , p q pq pq 真值相反时为假 , 等价不成立 ;

联结词优先级 :

¬ \lnot ¬ 大于 ∧ , ∨ \land , \lor ,大于 → , ↔ \to, \leftrightarrow ,

∧ , ∨ \land , \lor , 优先级相同 ;

→ , ↔ \to, \leftrightarrow , 优先级相同 ;



3 . 命题逻辑类型 :

可满足式 : 真值表中 , 至少有一个结果为真 , 可以都为真 ;

矛盾式 ( 永假式 ) : 所有的真值都为假 ;

可满足式 与 矛盾式 , 是 二选一 的 , 复合命题 要么是 可满足式 , 要么是 矛盾式 ;

重言式 ( 永真式 ) 是可满足式的一种 ;



4 . 简单命题形式化 :

参考 : 复合命题 与 命题符号化

定义命题 : 使用 p , q p,q p,q 代表真假必居其一的陈述句 ;

使用联结词 : 然后使用联结词联结这些 p , q p,q p,q 命题 ;



参考博客 :





二、 等值演算



等值式概念 : A , B A , B A,B 是两个命题公式 , 如果 A ↔ B A \leftrightarrow B AB 是永真式 , 那么 A , B A,B A,B 两个命题公式是等值的 , 记做 A ⇔ B A \Leftrightarrow B AB ;

等值演算置换规则 : A A A B B B 两个命题公式 , 可以 互相代替 , 凡是出现 A A A 的地方都可以替换成 B B B , 凡是出现 B B B 的地方都可以替换成 A A A ;



基本运算规律 :

  • 1. 幂等律 : A ⇔ A ∨ A A \Leftrightarrow A \lor A AAA , A ⇔ A ∧ A A \Leftrightarrow A \land A AAA
  • 2. 交换律 : A ∨ B ⇔ B ∨ A A \lor B \Leftrightarrow B \lor A ABBA , A ∧ B ⇔ B ∧ A A \land B \Leftrightarrow B \land A ABBA
  • 3. 结合律 : ( A ∨ B ) ∨ C ⇔ A ∨ ( B ∨ C ) (A \lor B ) \lor C \Leftrightarrow A \lor (B \lor C) (AB)CA(BC) , ( A ∧ B ) ∧ C ⇔ A ∧ ( B ∧ C ) (A \land B ) \land C \Leftrightarrow A \land (B \land C) (AB)CA(BC)
  • 4. 分配律 : A ∨ ( B ∧ C ) ⇔ ( A ∨ B ) ∧ ( A ∨ C ) A \lor (B \land C) \Leftrightarrow ( A \lor B ) \land ( A \lor C ) A(BC)(AB)(AC) , A ∧ ( B ∨ C ) ⇔ ( A ∧ B ) ∨ ( A ∧ C ) A \land (B \lor C) \Leftrightarrow ( A \land B ) \lor ( A \land C ) A(BC)(AB)(AC)

新运算规律 :

  • 5. 德摩根律 : ¬ ( A ∨ B ) ⇔ ¬ A ∧ ¬ B \lnot ( A \lor B ) \Leftrightarrow \lnot A \land \lnot B ¬(AB)¬A¬B , ¬ ( A ∧ B ) ⇔ ¬ A ∨ ¬ B \lnot ( A \land B ) \Leftrightarrow \lnot A \lor \lnot B ¬(AB)¬A¬B
    • 有了 与 ( ∧ \land ) 非 ( ¬ \lnot ¬ ) , 就可以表示 或 ( ∨ \lor )
    • 有了 或 ( ∨ \lor ) 非 ( ¬ \lnot ¬ ) , 就可以表示 与 ( ∧ \land )
  • 6. 吸收率 :
    • 前者将后者吸收了 : A ∨ ( A ∧ B ) ⇔ A A \lor ( A \land B ) \Leftrightarrow A A(AB)A
    • 后者将前者吸收了 : A ∧ ( A ∨ B ) ⇔ A A \land ( A \lor B ) \Leftrightarrow A A(AB)A ;

0 , 1 0 , 1 0,1 相关的运算律 :

  • 7. 零律 : A ∨ 1 ⇔ 1 A \lor 1 \Leftrightarrow 1 A11 , A ∧ 0 ⇔ 0 A \land 0 \Leftrightarrow 0 A00
    • 1 1 1 是或运算的 零元 , 0 0 0 是与运算的 零元 ;
    • 零元 进行运算结果是 零元 ;
  • 8. 同一律 : A ∨ 0 ⇔ A A \lor 0 \Leftrightarrow A A0A , A ∧ 1 ⇔ A A \land 1 \Leftrightarrow A A1A
    • 0 0 0 是或运算的 单位元 , 1 1 1 是 与运算的 单位元
    • 单位元 进行运算结果是其 本身
  • 9. 排中律 : A ∨ ¬ A ⇔ 1 A \lor \lnot A \Leftrightarrow 1 A¬A1
  • 10. 矛盾律 : A ∧ ¬ A ⇔ 0 A \land \lnot A \Leftrightarrow 0 A¬A0

对偶原理适用于上述运算律 , 将两边的 ∧ , ∨ \land , \lor , 互换 , 同时 0 , 1 0 ,1 0,1 互换 , 等价仍然成立 ;


等价蕴含运算规律 :

  • 11. 双重否定率 : ¬ ¬ A ⇔ A \lnot \lnot A \Leftrightarrow A ¬¬AA
  • 12. 蕴涵等值式 : A → B ⇔ ¬ A ∨ B A \to B \Leftrightarrow \lnot A \lor B AB¬AB
    • 替换蕴含联结词 : 蕴含联结词 → \to 不是必要的 , 使用 ¬ , ∨ \lnot , \lor ¬, 两个联结词可以替换 蕴含联结词 ;
  • 13. 等价等值式 : A ↔ B ⇔ ( A → B ) ∨ ( B → A ) A \leftrightarrow B \Leftrightarrow ( A \to B ) \lor ( B \to A ) AB(AB)(BA)
    • 双箭头 ( 等价联结词 ) 可以理解成重分必要条件
    • A → B A \to B AB ( 蕴含联结词 ) 理解成 A A A B B B 的充分条件 , B B B A A A 的必要条件
    • B → A B \to A BA ( 蕴含联结词 ) 理解成 B B B A A A 的充分条件 , A A A B B B 的必要条件
    • 替换等价联结词 : 等价联结词 ↔ \leftrightarrow 不是必要的 , 使用 → , ∨ \to , \lor , 两个联结词可以替换 等价联结词 ;
  • 14. 等价否定等值式 : A ↔ B ⇔ ¬ A ↔ ¬ B A \leftrightarrow B \Leftrightarrow \lnot A \leftrightarrow \lnot B AB¬A¬B
  • 15. 假言易位 ( 逆否命题 ) : A → B ⇔ ¬ B → ¬ A A \to B \Leftrightarrow \lnot B \to \lnot A AB¬B¬A
    • A A A 称为 前件 , B B B 称为 后件 ( 结论 ) ;
  • 16. 归谬论 ( 反证法 ) : ( A → B ) ∧ ( A → ¬ B ) ⇔ ¬ A ( A \to B ) \land ( A \to \lnot B ) \Leftrightarrow \lnot A (AB)(A¬B)¬A
    • 这是反证法的原理 , 由 A A A 推导出 B B B ¬ B \lnot B ¬B , B B B ¬ B \lnot B ¬B 是矛盾的 , 则 A A A 是错的 , ¬ A \lnot A ¬A 是对的 ;


参考博客 : 【数理逻辑】命题逻辑 ( 等值演算 | 幂等律 | 交换律 | 结合律 | 分配律 | 德摩根律 | 吸收率 | 零律 | 同一律 | 排中律 | 矛盾律 | 双重否定率 | 蕴涵等值式 … )





三、 主合取 ( 析取 ) 范式




1 . 极小项

极小项 : 极小项 是 一种 简单合取式 ;

  • 1.前提 ( 简单合取式 ) : 含有 n n n 个 命题变项 的 简单合取式 ;
  • 2.命题变项出现次数 : 每个命题变项 均 以 文字 的 形式 在其中出现 , 且 仅出现 一次 ;
  • 3.命题变项出现位置 : i i i ( 1 ≤ i ≤ n 1 \leq i \leq n 1in ) 个文字出现在 左起 第 i i i 个位置 ;
    • n n n 是指命题变项个数 ;
  • 4.极小项总结 : 满足上述三个条件的 简单合取式 , 称为 极小项 ;
  • 5. m i m_i mi M i M_i Mi 之间的关系 : ¬ m i    ⟺    M i \lnot m_i \iff M_i ¬miMi ¬ M i    ⟺    m i \lnot M_i \iff m_i ¬Mimi

每个命题 按照指定顺序 , 且 只出现一次简单合取式 , 称为极小项 ;

极小项列出的是成真赋值 , 因为合取式只有一种情况成真 , 那就是全真 ;



2 . 极大项

关于 极大项 的 说明 :

  • 1.极大项个数 : n n n 个 命题变元 会 产生 2 n 2^n 2n 个 极大项 ;
  • 2.互不等值 : 2 n 2^n 2n 个极大项 均 互不等值 ;
  • 3.极大项 : m i m_i mi 表示 第 i i i 个极大项 , 其中 i i i 是该极大项 成假赋值 的 十进制表示 ;
  • 4.极大项名称 : i i i 个极大项 , 称为 M i M_i Mi ;
  • 5. m i m_i mi M i M_i Mi 之间的关系 : ¬ m i    ⟺    M i \lnot m_i \iff M_i ¬miMi ¬ M i    ⟺    m i \lnot M_i \iff m_i ¬Mimi

每个命题 按照指定顺序 , 且 只出现一次简单析取式 , 称为极小项 ;

极大项列出的是成假赋值 , 因为析取式只有一种情况成假 , 那就是全假 ;



3 . 主合取 ( 析取 ) 范式

① 列出要求 主合取 ( 析取 ) 范式 的真值表 ;

p , q , r p , q , r p,q,r 三个命题真值从 0 , 0 , 0 0,0,0 0,0,0 1 , 1 , 1 1,1,1 1,1,1 , 2 3 = 8 2^3 = 8 23=8 列 , 每一列分别对应 m 0 ∼ m 8 m_0 \sim m_8 m0m8 极小项 , M 0 ∼ M 8 M_0 \sim M_8 M0M8 极大项 ;


② 主析取范式 ( 取极小项 ) : 真值表中的真值为 1 1 1 的列 取 极小项 ; 极小项 成真赋值 ; 根据极小项下标与成真赋值可以列出极小项的命题公式 ;


③ 主合取范式 ( 取极大项 ) : 真值表中的真值为 0 0 0 的列 取 极大项 ; 极大项 成假赋值 ; 根据极大项下标与成假赋值可以列出极大项的命题公式



4 . 总结 :

极小项 : 合取式 , 成真赋值 , 计算时取真值表 真 列 ;

极大项 : 析取式 , 成假赋值 , 计算时取真值表 假 列 ;



参考博客 : 【数理逻辑】范式 ( 合取范式 | 析取范式 | 大项 | 小项 | 极大项 | 极小项 | 主合取范式 | 主析取范式 | 等值演算方法求主析/合取范式 | 真值表法求主析/合取范式 )





四、 推理演算



推理的形式结构

前提 : A 1 , A 2 , ⋯   , A k A_1 , A_2 , \cdots , A_k A1,A2,,Ak

结论 : B B B

推理的形式结构为 : ( A 1 ∧ A 2 ∧ ⋯ ∧ A k ) → B (A_1 \land A_2 \land \cdots \land A_k) \to B (A1A2Ak)B



推理定律 : A , B A,B A,B 是两个命题 , 如果 A → B A \to B AB 是永真式 , 那么 A ⇒ B A \Rightarrow B AB ;



1、附加律


附加律 : A ⇒ ( A ∨ B ) A \Rightarrow (A \lor B) A(AB)

根据 推理定律 , A → ( A ∨ B ) A \to (A \lor B) A(AB) 蕴含式 是 永真式 ;

前提 : A A A

结论 : A ∨ B A \lor B AB


A A A 是对的 , 那么 A ∨ B A \lor B AB 也是对的 , 后者是在前者基础上附加了一个 B B B ;



2、化简律


化简律 : ( A ∧ B ) ⇒ A ( A \land B ) \Rightarrow A (AB)A , ( A ∧ B ) ⇒ B ( A \land B ) \Rightarrow B (AB)B

根据 推理定律 , ( A ∧ B ) → A ( A \land B ) \to A (AB)A , ( A ∧ B ) → B ( A \land B ) \to B (AB)B 蕴含式 是 永真式 ;

前提 : A ∧ B A \land B AB

结论 : A A A B B B


A ∧ B A \land B AB 是对的 , 那么 A A A B B B 也是对的 , 后者是在前者基础上进行了化简 ;



3、假言推理


假言推理 : ( A → B ) ∧ A ⇒ B ( A \to B ) \land A \Rightarrow B (AB)AB

根据 推理定律 , ( A → B ) ∧ A → B ( A \to B ) \land A \to B (AB)AB 蕴含式 是 永真式 ;

前提 : A → B A \to B AB , A A A

结论 : B B B


这是个典型的小三段论 ;



4、拒取式


拒取式: ( A → B ) ∧ ¬ B ⇒ ¬ A ( A \to B ) \land \lnot B \Rightarrow \lnot A (AB)¬B¬A

根据 推理定律 , ( A → B ) ∧ ¬ B → ¬ A ( A \to B ) \land \lnot B \to \lnot A (AB)¬B¬A 蕴含式 是 永真式 ;

前提 : A → B A \to B AB , ¬ B \lnot B ¬B

结论 : ¬ A \lnot A ¬A


可以理解为是反证法 ;



5、析取三段论


析取三段论 : ( A ∨ B ) ∧ ¬ A ⇒ B ( A \lor B ) \land \lnot A \Rightarrow B (AB)¬AB , ( A ∨ B ) ∧ ¬ B ⇒ A ( A \lor B ) \land \lnot B \Rightarrow A (AB)¬BA

根据 推理定律 , ( A ∨ B ) ∧ ¬ A → B ( A \lor B ) \land \lnot A \to B (AB)¬AB , ( A ∨ B ) ∧ ¬ B → A ( A \lor B ) \land \lnot B \to A (AB)¬BA 蕴含式 是 永真式 ;

前提 : A ∨ B A \lor B AB , ¬ A \lnot A ¬A

结论 : B B B


( A ∨ B ) (A \lor B) (AB) 是正确的 , 其中 A A A 是错误的 , 那么 B B B 肯定是正确的 ;

( A ∨ B ) (A \lor B) (AB) 是正确的 , 其中 B B B 是错误的 , 那么 A A A 肯定是正确的 ;

警察破案常用推理方式 , 逐一排除嫌疑人 ;



6、假言三段论


假言三段论 : ( A → B ) ∧ ( B → C ) ⇒ ( A → C ) ( A \to B ) \land ( B \to C ) \Rightarrow ( A \to C ) (AB)(BC)(AC)

根据 推理定律 , ( A → B ) ∧ ( B → C ) → ( A → C ) ( A \to B ) \land ( B \to C ) \to ( A \to C ) (AB)(BC)(AC) 蕴含式 是 永真式 ;

前提 : A → B A \to B AB , B → C B \to C BC

结论 : A → C A \to C AC



7、等价三段论


等价三段论: ( A ↔ B ) ∧ ( B ↔ C ) ⇒ ( A ↔ C ) ( A \leftrightarrow B ) \land ( B \leftrightarrow C ) \Rightarrow ( A \leftrightarrow C ) (AB)(BC)(AC)

根据 推理定律 , ( ( A ↔ B ) ∧ ( B ↔ C ) ) → ( A ↔ C ) ( ( A \leftrightarrow B ) \land ( B \leftrightarrow C ) ) \to ( A \leftrightarrow C ) ((AB)(BC))(AC) 蕴含式 是 永真式 ;

前提 : A ↔ B A \leftrightarrow B AB , B ↔ C B \leftrightarrow C BC

结论 : A ↔ C A \leftrightarrow C AC



8、构造性两难


等价三段论: ( A → B ) ∧ ( C → D ) ∧ ( A ∨ C ) ⇒ ( B ∨ D ) ( A \to B ) \land ( C \to D ) \land ( A \lor C ) \Rightarrow ( B \lor D ) (AB)(CD)(AC)(BD)

根据 推理定律 , ( ( A → B ) ∧ ( C → D ) ∧ ( A ∨ C ) ) → ( ( B ∨ D ) ) ( ( A \to B ) \land ( C \to D ) \land ( A \lor C ) ) \to ( ( B \lor D ) ) ((AB)(CD)(AC))((BD)) 蕴含式 是 永真式 ;

前提 : A → B A \to B AB , C → D C \to D CD , A ∨ C A \lor C AC

结论 : B ∨ D B \lor D BD


理解方式 :

A A A 是发展经济 , B B B 是污染
C C C 是不发展经济 , D D D 是贫穷

A ∨ B A \lor B AB 要么发展经济 , 要么不发展经济
结果是 B ∨ D B \lor D BD , 要么产生污染 , 要么忍受贫穷



参考博客 : 【数理逻辑】命题逻辑 ( 命题逻辑推理 | 推理的形式结构 | 推理定律 | 附加律 | 化简律 | 假言推理 | 拒取式 | 析取三段论 | 假言三段论 | 等价三段论 | 构造性两难 )

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值